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Abstract 

Much of the work of Spectrum Planning Group is based on well established principles of ‘antennas 
and propagation’.  Propagation matters have received a lot of attention over the years and much has 
been written on the topic but the ‘antennas’ part, although arguably simpler, may lack a suitable 
written reference that gathers much of the relevant material into one place.  The primary purpose of 
this White Paper is to take a step towards correcting this state of affairs, but a huge amount of 
underlying complexity comes to light when one ‘scratches the surface’ of a topic like this. 
A secondary objective, then, is to present some of the more interesting and useful facts, and to 
provide simple, physical explanations wherever possible. 

In summary, this White Paper is intended to provide a compendium of well-known and obscure facts 
about dipole antennas and isotropic sources including effective aperture areas, coupling factors, 
radiation resistances and link budget equations.  What began as a simple case of looking up the 
effective aperture area of a dipole developed into a quest for the whole story about dipole antennas 
and has resulted in this re-working of a small part of a very-old, but intriguing story. 

Of course, spectrum planning for terrestrial broadcasting involves many more-complicated antennas 
such as log-periodic dipole arrays and Yagi-Uda arrays, not to mention the multitude of clever 
transmitting antenna designs based on slots.  It wouldn’t be possible to do these justice as well in a 
document of this size so I’ve deliberately limited the scope. 

 

Additional key words: antenna, dipole, antenna gain, effective aperture area, link budget, 
radiation resistance, cage dipole, folded dipole, balun, monopole, 
biconical dipole, discone 
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Dipole antennas 

Chris Gandy 

Spectrum Planning Group 

 

1. Preface 

The full title of this White Paper should be ‘A compendium of well-known and obscure facts about 
dipole antennas and isotropic sources including effective aperture areas, coupling factors, radiation 
resistances and link budget equations’ but I abbreviated it for the sake of presentation.  It is mainly 
about dipole antennas, and VHF/UHF ones at that, but not just the types used for broadcasting. 

There seems to be a long tradition of staff in BBC R&D (and Research Department before 1993 [1]) 
writing documents about antennas, often reproducing material that can be found in text books but 
usually presenting it in a different way in order to support some specific motive – not just education 
about the topic in general.  This White Paper conforms to that tradition and I claim no originality for 
the content.  Like Eric Morecambe’s encounter with André Previn (“I’m playing the right notes 
sunshine …”), the parts of the story aren’t always presented together in this order, and sometimes the 
order in which a story is unfolded can affect how easily it is comprehended.  Also, I’ll try wherever I 
can to add some value by justifying or challenging common ‘knowledge’ rather than just accepting it 
(e.g. can you explain why the majority of dipoles in use are folded ones?) although I won’t attempt to 
derive everything from first principles.  Unlike some of the well known authors on this topic, I will 
try my hardest not to leave derivations of important background as ‘exercises for the reader’. 

On a scale from dissertation to ‘Haynes manual’, I aim to pitch this document somewhere in the 
middle so its content will be accessible to people who make and use antennas.  Much as I admire the 
universal applicability of Maxwell’s equations, I won’t use vector calculus here because I believe that 
would defeat this objective.  Also, that degree of generality may not always be needed when the topic 
is this specialised.  I will try as far as I can to present explanations in straightforward electrical 
engineering terms although, I’d have to admit, along the way I came across a few oddities that still 
baffle me! 

Although most of what I’ll present here is standard text-book material, for completeness I needed to 
deduce for myself some of the more obscure bits because either I didn’t understand the explanations 
provided in the literature or no explanation was forthcoming.  Even in these cases I’m confident that 
I’ve no more than stumbled upon paths many others have trodden before.  An example is my 
derivation of the radiation resistance of a folded dipole and my treatment of the λ/2 transmission-line 
‘balun’ that goes with it. 

In addition, I’ll mention some particularly interesting but, possibly, little known designs of dipole 
antenna that have stood the test of time, for forty or fifty years, but are now in danger of slipping, 
silently, into obscurity.  The names by which I’ll refer to these may not be the same as those that have 
been used in the relevant industry. 

I will present this document in two parts, in a similar manner to my aged White Paper about DAB [2].  
In the first part I’ll deal with the use of dipole antennas and isotropic sources, particularly how their 
characteristics are represented in everyday link budget calculations, without getting too much into 
the physics of how antennas work.  In the second part I’ll delve deeper into the electrical engineering 
of dipole antennas, of several different types, and touch on matters of ‘how’ and ‘why’.  Unlike that 
earlier White Paper, I’ll use a simple, sequential, section-numbering scheme. 

There’s not much here to enthral the antenna cognoscenti, but please do read on – one or two of the 
areas I’ll venture into that are less well-covered in the standard text books might raise a smile! 
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PART 1: characteristics of isotropic sources and λ/2 dipole antennas 

2. Introduction 

There are many excellent text books on the topic of antennas and almost anything you could wish to 
know about simple forms of antenna, like the dipole, can be found – if you know where to look, or 
you have the time and inclination to read some of the books cover-to-cover.  The book ‘Antennas’ by 
John Kraus [3] contains all the working needed to derive expressions for the effective aperture and the 
coupling factor (i.e. ‘k-factor’ or ‘effective length’) of a balanced, thin, linear, resonant λ/2 dipole 
antenna, although the full derivation takes a somewhat convoluted path through the chapters of the 
book.  Kraus also provides working that can be applied to a hypothetical isotropic source (or ‘point 
source’), used as a reference against which the gains of many types of antenna are measured.  It is 
instructive to compare results for the two cases and to develop the working up to practical link 
budgets (actually, I will go as far as the equations on which link budgets are based). 

An important principle to keep in mind when reading books about antennas, and this document, is 
that this field of engineering is full of small approximations that usually don’t matter much.  In this 
Part I will print in italic typeface numerical values that contain small rounding errors that would be 
inconsequential in most circumstances.  I will also use italics throughout for names of variables like 
E and A, to indicate emphasis and for occasional, well-known, bits of Latin. 

Many stages of the development will require liberal interchange between the transmitting and 
receiving cases, assuming reciprocity without question, and where I present illustrations I’ll hop 
between horizontal and vertical ‘polarisation’ to suit the page formatting. 

3. Radiation resistance 

In the transmitting case, power is fed into an antenna and, if it is well matched, most of it doesn’t 
come back – it’s either radiated as an electromagnetic wave or it’s dissipated as heat.  This is 
analogous to feeding power into a pair of resistors; let’s say, connected in series.  Their relative values 
determine the proportions of the power they absorb and, in a matched system, the sum of their 
resistances matches the internal resistance of the power source (which may be altered up or down 
using some kind of transformer in order to achieve a match).  The value of the resistor that accounts 
for power transferred to the outgoing electromagnetic wave is the radiation resistance of the antenna.  
Generally, the smaller the radiation resistance of an antenna the less efficient it is because a greater 
proportion of the power is developed in the other, loss, resistance.  Indeed, the radiation efficiency can 
be defined as the ratio of the radiation resistance to the total terminal resistance.  However, large 
values of radiation resistance often go hand-in-hand with large rates of change of the value with 
frequency and the practical upper limit for efficient matching is probably little more than a kilohm. 

When an antenna is receiving, an EMF is induced in it by the incoming electromagnetic wave in 
which the antenna is immersed, and this EMF is presented to the ‘down-lead’ connecting it to the 
receiver.  Every generator has an internal resistance and in this case it is the radiation resistance 
(in series with the loss resistance, but in the following sections I’ll assume this has a value of zero Ω). 

Of course, an antenna can be modelled just as well using shunt admittances rather than series 
impedances, in which case modelling the generator as a current source simplifies calculations – the 
principle of Thévenin and Norton equivalent circuits.  However, I suspect I’m not the only engineer 
who considers constant voltage sources much more intuitive than constant current sources.  After all, 
how do we most often encounter sources of electricity?  Batteries and the mains: both well known 
voltage sources with nominally ‘constant’ values like 1.5 V, 9 V or 12 V, and 230 V RMS ±10%.  
When’s the last time you encountered a practical current source, capable of developing whatever 
voltage it takes to maintain the specified constant current?  I remember NiCd batteries liked them and 
I vaguely recall they might have been used for powering undersea co-axial cable repeater amplifiers. 

In general, the impedance an antenna presents to its terminals contains reactive and resistive parts 
that both vary with frequency.  Some types of antenna, for instance those involving conical elements, 
and generally “fat” antennas, are designed to minimise this variation over a wide band.  Some other 
types, such as thin dipoles, exhibit distinct resonances and are usually operated at or around one of 
their resonant frequencies where the reactive part of their terminal impedance is small, in order to 
simplify matching. 
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4. Effective aperture area of an isotropic source 

A practical transmitting antenna produces a multitude of different electric (E) and magnetic (H) field 
components distributed differently around the antenna, with different rates of decay with distance 
from it, oriented in different directions (e.g. the direction in which the E field would apply a force to a 
charge), and with different phase relationships relative to the alternating current fed to the antenna 
terminals.  So, generally, the aggregate quantities E and H need to be represented by vectors in space 
and phasors in time and their magnitudes are quantified in units of V/m and A/m, respectively. 

A large distance away from the antenna, in a 
region know as the ‘far field’, the only two 
remaining components of significant strength 
are the E and H fields that form a ‘plane wave’ 
– in phase with each other in time, oriented 
perpendicularly to one another and mutually 
perpendicular to the direction of propagation, 
radially out from the antenna.  I have illustrated 
these to the right for a vertically-polarised wave 
using a pair of sinusoidal waveforms. 
The hatching is meant to identify the 
perpendicular orientations of the fields.  If the 
plane in which I’ve shown E and H axes is 
visualised as moving in the direction of 
propagation, the instantaneous magnitude and 
sign of each field is indicated by where each 
sine wave cuts this transverse plane.  
Consequently a plane wave can also be termed 
a Transverse Electro-Magnetic or TEM wave.  
The magnitudes of E and H in a plane wave are 
related by Z, the intrinsic impedance of the propagating medium (see the box below: the intrinsic 
impedance of space).  For simple antennas, the transition into the far field occurs at a distance from the 
antenna r > 2πλ, where λ is the wavelength in use. 

At any distance from the antenna, the strength of the outgoing wave can be found by taking the 
vector cross product of whatever E and H components are present, with geometrical reference to the 
normal vector that radiates out from the antenna (i.e. a vector in the direction of propagation).  This 
resolves those parts of E and H that are in time phase and oriented as above, and the result is another 
vector known as the ‘Poynting vector’.  The magnitude of the Poynting vector is the product of the 
strengths of the plane-wave E and H fields so it has the dimension W/m2 and represents the power 
density S = P/a; a power P radiated through 
an area a.  Considering magnitudes, S = E H 
and E/H = Z so S = E 

2/Z and then P = E 
2a/Z. 

For a hypothetical lossless isotropic 
transmitting antenna, at a distance r away the 
power is radiated uniformly through a sphere 
of surface area 4πr 

2 producing a uniform 
electric field of strength Er related to P by: 

 
Z

rE
P r

22 4π
=  

… and, because E 
2 ∝ 1/r 

2 or S ∝ 1/r 
2 for a 

given value of P, this illustrates the principle 
known as ‘spherical spreading’. 

Now consider for a moment a lossless 
(uni-)directional transmitting antenna.  
Directional properties are achieved by 
interference between waves originating from 
multiple different sources, or points in a 

 
 

An electromagnetic wave propagating in space, or any 
other medium, gives rise to electric and magnetic fields 
which can each be considered a manifestation of the 
same thing: the electromagnetic wave. 

The relationship between the strengths of the electric 
and magnetic fields, Z = E/H, has the dimension of 
electrical resistance and is known as the intrinsic 
impedance of the medium [6].  For free space: 

00 εμ=Z   and  001 εμc =   so  ( )cε01=Z  

… where ε0 = 8.85×10-12 (Fm-1) and the velocity of light 
c = 3×108 (ms-1), both initially evaluated by 
measurement.  So the intrinsic impedance of space, 
Z = 120π (Ω) or 377 Ω and the error in applying this 
value to air instead of a vacuum is miniscule. 

The value of µ0 = 4π×10-7 (Hm-1) is often stated as being 
‘by definition’ implying historically that the value of 
µ0 followed from the definition of the expression for c. 

the intrinsic impedance of space 

H

E
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continuous source distribution.  Generally, the sources or continuous distribution are arranged in the 
direction of propagation, ‘end fire’ like a Yagi-Uda array, or normal to it, ‘broadside’ like the obvious 
aperture of a waveguide horn antenna or a dish reflector.  The interference reinforces the strength of 
the resulting Poynting vector in some directions and reduces it in others. 

For the case of a planar aperture, if the input power P is distributed uniformly throughout its area A 
giving rise to a uniform Poynting vector in the space immediately in front of the aperture (plus other 
field components that I’ll disregard), the electric field component of this has a magnitude EA, and: 

 
Z

AE
P A

2

=  

If the radiated plane wave has an electric field strength Er at a distance r from the aperture in the 
direction of maximum radiation, Kraus [4] shows this is related to the aperture field EA by: 

 
λr
AE

E A
r =  

… which results from integration of contributions from elements of the aperture and is a development 
of Kraus’s treatment of continuous arrays of discrete sources [5].  The EA/r factor accounts for 
spherical spreading and the A/λ part represents the ‘electrical’ size of the aperture – interestingly, this 
factor cannot be A/λ2.  Working in the other direction, back towards the aperture: 

 
A

rE
E r

A
λ

=  

Of course, the field strength in each case is assumed to vary sinusoidally with time so it could be 
written† as E0 e 

jωt where E0 is the ‘amplitude’ or peak magnitude.  However, the usual meaning of 
‘power’ is average power which is proportional to the square of the RMS field strength, or current, or 
voltage, so in this context EA and all the other variants of E are RMS values. 

Equating the expressions for P : 
Z

rE

Z

AE rA
222 4π

=   so  
A

r

E

rE
A

2

22 4π
=  

… and substituting for EA: 
π

π
4

4 2

222

222 λ
λ

==
rE

ArE
A

r

r  

This means, hypothetically, if a planar aperture were assigned to an isotropic source in order to 
represent its radiation or reception characteristics in a manner suitable for link budget calculations, 
for example, its effective area would be: 

 
π4

2λ=A  

This is a useful reference against which practical, non-isotropic antennas can be compared but I’m not 
suggesting a practical isotropic antenna could be designed, let alone one based on a planar aperture. 

5. Effective aperture area of a λ/2 dipole 

Kraus [7] considers a λ/2 dipole antenna illuminated by a uniform plane wave which he assumes to 
induce a current on the dipole with a sinusoidal distribution along its length.  Apparently, this is a 
close approximation to most of the natural distribution for a thin antenna [8] and many of the 

standard text books on antennas state that this is 
supported by experimental results.  In many respects 
a centre-fed dipole behaves like a balanced 
transmission line, open circuit at the far end(s), so a 
voltage applied (or induced) at the terminals gives 
rise to a standing wave which must have zero current 
at the open-circuit ends.  Assuming a simple 
sinusoidal current distribution, the result would be as 
illustrated to the left.  Note that the currents in both 

                                                      
† Actually, E0 e 

jωt = cosωt + jsinωt but usually the real (more common) or imaginary part alone is taken to 
represent something like a field strength that cannot be instantaneously complex. 

I 

0 

I0 

~ 
λ/2 

I I 
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limbs of a balanced, linear λ/2 dipole flow, geometrically, in the same direction whereas, considered 
as a transmission line, these currents in the two conductors can be said to flow in opposite directions 
(towards and away from the source).  The existence of two distinct current ‘modes’ operating 
simultaneously will be discussed further in Part 2. 

For each infinitesimal element of the dipole’s length Kraus assumes the elemental induced voltage 
and current are proportional to one another and that their ratio is constant (viz the average 
characteristic impedance of the ‘transmission line’).  He integrates over the length of the dipole and 
arrives at: 

 
π
λ

EV =  

… where V is the EMF induced at the centre feed-point of the dipole by the appropriately-polarised 
incident field of magnitude E. 

If the incident plane wave has a power density S and the dipole has an effective aperture area A, 
assuming perfect matching and no losses, the power extracted from the wave P = SA,  so [9]: 

 
S
P

A =   and, as before  
Z
E

S
2

=  

Perfect matching implies that reactive components are cancelled and the dipole is effectively 
terminated by a resistance equal to its own radiation resistance Rr .  The induced EMF is then 
developed equally across the radiation resistance and the termination resistance so the power P 
developed in the termination is: 

 
rR

V
P

4

2

=  

Then: 
rSR

V
A

4

2

=  

Substituting for V and S: 
rr R

Z

RE

ZE
A

2

2

22

22

44 ππ
λλ ==  

Also, Kraus [10] evaluates the radiation resistance Rr of an infinitely-thin λ/2 dipole as 73 Ω.  This 
begins [11] with derivation of an expression for the H field around the transmitting dipole, which 
requires knowledge of the current distribution along its length, which is assumed to be sinusoidal. 

In the far-field, E/H = Z so the Poynting vector can be expressed in terms of the H component alone 
[12].  The maximum H-field strength is related to the maximum current I0 in the centre of the dipole 
by the expression H = I0 /2πr [13] derived from the Biot-Savart law.  Integrating the magnitude of the 
Poynting vector over a large sphere enclosing the antenna [14] then yields the power radiated which, 
assuming no losses, can be equated to the power input to the dipole P = (I0 /√ 2)2Rr , and thereby Rr is 
evaluated.  The √ 2 relationship between the RMS and peak values appears here because I0 is the 
amplitude of the current as well as the peak in the distribution along the length of the dipole. 

An alternative approach is known as the ‘induced EMF method’ [15, 16] in which two identical λ/2 
dipoles are considered, parallel and separated, and an expression is developed for their mutual 
impedance, that is, the EMF induced in one (appearing between its terminals) for a given current 
driven through the terminals of the other.  This involves calculation of the E-field radiated by the first 
dipole and then the EMF induced in the second dipole by this field, as before.  The distance between 
the two antennas is allowed to approach zero and the ratio of the terminal EMF to the terminal 
current tends towards the terminal impedance of the (single) antenna.  Apparently [17], it can be 
demonstrated that this method is equivalent to the ‘integral of Poynting vector’ method. 

With the formulation Kraus uses, the actual value of 73 Ω contains a specific evaluation of the 
‘Cosine integral’ as well as the 120 from Z so, unlike the value for Z, it is not just a simple combination 
of fundamental constants.  The full terminal impedance of a lossless thin λ/2 dipole is 73 + j42.5 Ω [18] 
and Kraus mentions that in practice the length of the dipole can be reduced a little to remove the 
inductive reactance appearing in series with the radiation resistance, making the resulting value 
about 70 Ω.  Indeed, the length can be reduced further to provide a terminal resistance less than 70 Ω 
at the expense of introducing an effective series capacitive reactance and I’ll return to this topic later. 



 7 

It should be kept in mind that practical dipole antennas for VHF/UHF are often made of stout 
material and may not be so ‘thin’, so the relevance of these specific values is limited. 

For an antenna of arbitrary shape and size, a numerical solution is often appropriate using one of the 
many computer programs available nowadays (see the box below: NEC and the ‘method of moments’). 

Inserting values for Z and Rr : 

 
734

120
2

2

π
πλ=A  

 
π473

120 2λ⋅=∴ A   or  
π4

644.1
2λ  

In comparison with the result for an isotropic source, the ratio 1.644 is the origin of the well-known 
‘gain’ of a λ/2 dipole over an isotropic source. 

 10log101.644 = 2.16 dBi 

The gain of an antenna relative to an isotropic source is usually written with the unit ‘dBi’.  For some 
reason, probably rounding, this particular value is given as 2.15 dBi (or a ratio of 1.64) in some 
textbooks [e.g. 22] and this number had been firmly etched into my memory.  I’ll write the ratio as 
1.64 hereafter. 

It may be of interest to note that since ‘the induced EMF is then developed equally across the 
radiation resistance and the termination resistance’, as I stated earlier in this section, an amount of 
power equal to P is ‘dissipated’ in the radiation resistance.  Kraus explains [23] that this power is 
re-radiated or ‘scattered’ by the antenna and is an inevitable consequence of placing a single dipole 
(λ/2 or shorter) in an EM wave.  As he writes “under conditions of maximum power transfer, as 
much power is dissipated in the generator as is delivered to the load” – evidently whether or not the 
generator has physical terminals. 

Kraus mentions [24] that this scattering phenomenon does not apply in general but goes on to show 
[25] that it does apply, equally, to a large sheet of RF-absorbing material backed by a conducting 
sheet, λ/4 behind it.  He states [26] “the incident wave front is disturbed and the energy flow 
redirected over an area twice the area A”.  This isn’t surprising because, considering diffraction, some 
effect on the incident wave-front would be expected in a region surrounding the perimeter of the 
sheet – or immediately above a ‘knife edge’; a case well-known to spectrum planners.  Cases where 
this principle does not apply include an absorbing sheet of infinite size and, presumably 
(and hopefully!), a fully anechoic range. 

 
 

For the general case of a dipole of any thickness, the current distribution cannot be assumed sinusoidal but 
can be found by solving an ‘integral equation’, where the integral of an unknown quantity equals a known 
quantity.  Analytical solution is only straightforward for a filament.  A much-favoured numerical approach is 
the ‘method of moments’ on which software tools like NEC (the Numerical Electromagnetics Code) [19] and 
many derivatives are based.  In this method [20], the antenna is divided along its length into a number of 
‘segments’ over each of which the current is taken to vary in accordance with some simple relationship to 
distance along the segment; a so-called ‘basis function’ (e.g. uniform or triangular, at the simplest). 

The effect of the current is represented by a single ‘source point’ on each segment, rather like the centre-of-
gravity of an object represents its distributed mass at a single point.  Then, to some arbitrary ‘observation 
point’ the effect of the current in each segment is a simple function of the distance from the source point and 
the effective value of the current – hence the term ‘moment’ (as encountered in mechanics). 

A set of ‘observation points’ is then defined, rather like gathering a 3-D view of an object by looking at it from 
several different viewpoints.  If this set has the same number as the set of ‘segments’, the resulting matrix, of 
what are effectively simultaneous linear equations, is usefully made square.  Solution of the integral has then 
been transformed into matrix inversion which is amenable to computation for sets up to 10,000 or so [21]. 

Successful solution also requires application of a ‘boundary condition’ to one side of the matrix equation. 
If this describes the current distribution in an antenna when immersed in a uniform plane wave then a 
candidate may be that the value of E is constant for all observation points in the same plane transverse to the 
direction of propagation.  Another is that the tangential E-field strength is zero on the surface of a conductor. 

Solution is then achieved numerically, and accuracy can be traded for processing time by increasing the 
number of ‘segments’.  However, the practical implementation is much, much more complicated than this! 

NEC and the ‘method of moments’ 
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6. Coupling factor of a λ/2 dipole 

Taking the λ/2 dipole first because the solution has already been given in the previous section, 
V = E λ/π where V is the EMF induced at the centre of the dipole by a uniform incident field of 
strength E with appropriate polarisation. 

What seems to have become known in BBC R&D as the ‘effective length’ of the dipole, which Kraus 
[27] and others call the ‘effective height’ h (probably from consideration of monopoles built on the 
ground), is then given by: 

 
π
λ==

E
V

h  (m) 

… and this facilitates calculation of the signal voltage presented to a receiver from a given incident 
field strength, usually both RMS values. 

Assuming no losses, the signal voltage Vs presented to a perfectly matched termination (e.g. receiver) 
is half the EMF, so: 

 
2

1⋅=
π
λ

EVs  

It is often useful to work with expressions like this in decibel form, and this is made straightforward 
by always dealing with quantities directly related to power, hence: 

 
2

22

2

1
⎟
⎠
⎞

⎜
⎝
⎛ ⋅=
π
λ

EVs  

In decibels: 20log10 Vs = 20log10 E + 20log10 λ − 20log10 2π 

Then, for example (because, alternatively, one might wish to express the field strength in dBmV/m or 
some other unit): 
 Vs (dBµV) = E (dBµV/m) + 20log10 λ  − 16 

… with λ expressed in metres.  Any known power gains or power losses, expressed in dB, can easily 
be included in this sum. 

7. Link budgets involving antennas related to a λ/2 dipole 

In link budgets involving dipole antennas or antennas based on arrays of dipoles, as apply to 
terrestrial radio and television broadcasting at VHF and UHF, it is conventional to express antenna 
gains in dBd, meaning decibels above the ‘gain’ or coupling factor of single λ/2 dipole.  This 
dimensionless ‘gain’ can be interpreted as the degree to which the antenna beam is further confined 
(e.g. in terms of solid angle) or as the relative size of the effective aperture area. 

Since the effective aperture area of a λ/2 dipole is: 

 
π4

64.1
2λ=A  

… the relative gain G of an antenna with some arbitrary effective aperture area Ae is given by: 

 eAG
264.1

4

λ
π=  

Assuming no incidental losses, if a power Pt were radiated by an isotropic source (uniformly 
throughout a solid angle of 4π steradians), at a distance r away the power density would be: 

 
24 r

P
S t

π
=  

If the same amount of power were radiated by a λ/2 dipole, the maximum power density at a 
distance r away would be increased by the factor 1.64: 

 
24

64.1

r

P
S t

π
=′  

If, in practice, the transmitting antenna has a gain Gt relative to a λ/2 dipole, the solid angle over 
which the energy is radiated is further reduced, proportionately, and the maximum power density is 
correspondingly increased: 
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24

64.1

r

GP
S tt

r π
=  

If the receiving antenna has an effective aperture area Ae, the power Pr it collects is: 

 
24

64.1

r

AGP
ASP ett

err π
==  

… and if this receiving antenna has a gain Gr relative to a λ/2 dipole, then its maximum effective 
aperture area is: 

 re GA
π4

64.1 2λ=  

 
2

4

64.1
⎟
⎠
⎞

⎜
⎝
⎛=∴

r
GGPP rttr π

λ  

This is an adaptation of the Friis transmission formula [28].  The dimensionless factor (1.64λ/4πr)2 
represents the free-space ‘spherical-spreading’ transmission loss between two λ/2 dipole antennas 
which is multiplied by the cascaded gains (and any incidental losses) to yield the power received for a 
given power fed to the transmitting antenna. 

It’s probably incorrect to say that this transmission loss depends on λ because this factor has only 
appeared to relate the aperture area to the gain of the receiving antenna.  The ability of a transmitting 
antenna to create a certain power density at a chosen radius clearly depends on its gain which, 
equally, is related to its aperture area by λ2, so if the above expression were written containing the 
aperture areas of both antennas Aet and Aer it would become: 

 
22λr

AAP
P erett

r =  

… reversing  the apparent sense of the dependence on λ . . . QED? 

Returning to the version containing both antenna gains, in decibels: 

 10log10 Pr = 10log10 Pt + 10log10 Gt + 10log10 Gr + 20log10 λ − 20log10 r + 20log10 (1.64/4π) 

For example: 

 Pr (dBm) = Pt (dBW) + Gt (dBd) + Gr (dBd) + 20log10 λ − 20log10 r + 12.3 

… with λ and r expressed in the same unit.  Any incidental losses can be taken into account by 
subtracting their decibel values from the right-hand side. 

The product of Pt and Gt is often represented by a single factor known as the ERP (Effective Radiated 
Power) with the unit of watts or dBW, which describes the strength of the signal radiated by a 
terrestrial transmitter. 

However, for reasons that are probably clouded by history, the sensitivity of domestic television 
receivers, VHF broadcast radio receivers, communication receivers, VHF/UHF transceivers, etc., is 
often specified in terms of the input signal voltage required to yield a certain signal-to-noise ratio.  
Pr = Vs

2/R where R is the input resistance of the receiver (and the characteristic impedance of the 
matched antenna and down-lead) so Vs = √ (Pr R).  Evidently, this can introduce inaccuracy because 
the input signal power is the important parameter and specifying the sensitivity this way makes it 
dependent on R. 

Nevertheless, the type of link budget often encountered in broadcasting can be presented in two 
stages.  First, from a given transmitter ERP PERP = Pt Gt , the electric field strength is derived at the 
potential location of the receiving antenna: 

 
24

64.1

r

P
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r π
=   and  

Z
E
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2

=  

… so: 
2

2

4

64.1

r

ZP
E ERP

π
=   or  

r

P7
E ERP=  

This remarkably-simple expression for E is used as a ‘rule of thumb’ in Spectrum Planning Group. 
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In decibels: 20log10 E = 10log10 PERP − 20log10 r + 10log10 (1.64×120π/4π) 

For example: E (dBµV/m) = PERP (dBW) − 20log10 r  + 137 

… with r expressed in metres.  Of course, this simple version is only valid for a single line-of-sight 
path and the practical case for paths diffracted over hills and other obstacles would be much more 
complicated. 

The second step is to apply the coupling factor for a receiving antenna based on a dipole to yield the 
signal voltage appearing across the input terminals of the receiver.  Recapping from the beginning of 
the previous section, the EMF induced in a λ/2 dipole is given by: 

 
π
λ

EV =  

… and the signal voltage Vs presented to a perfectly matched receiver is half V so:  
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Including the power gain of the receiving antenna Gr , relative to a λ/2 dipole, and the power loss L of 
the down-lead connecting the antenna to the receiver, we have: 
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In decibels: 20log10Vs = 20log10 E + 10log10 Gr − 10log10 L + 20log10 λ − 20log10 2π 

For example: Vs (dBµV) = E (dBµV/m) + Gr (dBd) − L (dB) + 20log10 λ − 16 

… with λ expressed in metres. 

Putting the two steps together, for example: 

 Vs (dBµV) = PERP (dBW) + Gr (dBd) − L (dB) − 20log10 r + 20log10 λ + 121 

… with r and λ expressed in the same unit. 

I’ve given an example using some of these expressions in the box below: a practical example – the 
gainless repeater. 

The on-channel repeater principle is useful for extending transmitter coverage without need for additional 
spectrum but unwanted feedback always imposes an upper limit on the amount of gain that can be used. 
In some circumstances, though, a small but worthwhile extension of coverage might be achieved with no gain 
at all – just a receiving antenna, located where there is plenty of field strength, connected by a cable to a 
transmitting antenna in a region that would otherwise lack sufficient field strength; inside a shop, for example. 

The main limitation of this approach is on account of spherical spreading from the new, secondary 
transmitting antenna.  Whereas the original, primary transmitting antenna is some distance away and moving 
a portable receiver one metre further away from it has little effect, moving the receiver one metre further away 
from the secondary antenna when it’s only one metre away to start with can reduce the available field 
strength by 6 dB. 

Suppose the building-penetration loss of a shop is 20 dB, from outside on the roof to the display area, the 
field strength outside E1 = 55 dBµV/m and the value required for solid operation of receivers is 
E2 = 40 dBµV/m.  From expressions presented in Section 7 it can be deduced that: 
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… where Gr and Gt are the gains of the receiving and transmitting antennas at the ends of the cable for which 
L is the loss, R is the characteristic impedance of the matched system and r is the distance between the 
secondary transmitting antenna and the receiver.  If λ = 1.33 m (DAB), Gr = 4 (Yagi), Gt = 1 (dipole), 
L = 2 (50 m of H100 co-axial cable plus connectors) and R = 50 Ω, this gives E2

2/E1
2 = 0.09/r 

2. 
The requirement in this case is E2

2/E1
2 ≥ 0.03 (-15 dB) so r ≤ 3 m and the secondary antenna could be 

mounted above a suspended ceiling, for example (but not directly above whip antennas). 

Of course, this ‘repeater’ is bi-directional so the principle could be used to improve mobile telephony in an 
otherwise-screened enclosure like a modern railway carriage. 

a practical example – the ‘gainless’ repeater 
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8. Coupling factor of an isotropic source 

In the derivation of the effective aperture of an isotropic source, we found: 

 
Z

AE
P A

2

=   and  
π4

2λ=A   so  
ππ 4120

22 λ⋅= AE
P  

Now we can drop the subscript from EA because we are dealing solely with the incident (i.e. aperture) 
field.  Also, in the derivation for a λ/2 dipole we covered the general result for a perfectly matched 
receiving antenna terminated in a resistance equal to its own radiation resistance Rr , that: 

 
rR
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  or  
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22
2 rREV ⋅=

π
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Unlike the λ/2 dipole, the radiation resistance Rr of an isotropic source cannot be evaluated uniquely.  
Indeed, if an isotropic antenna could be realised its radiation resistance would probably be so small as 
to make its radiation efficiency close to zero.  However, the isotropic source is only intended to be a 
hypothetical reference so if it were postulated that an isotropic receiving antenna could be made with 
Rr = 73 Ω, the same as a λ/2 dipole, then: 

 
64.1

1

120

73 ⋅==
ππ
λλ

EEV  

In comparison with the result for a λ/2 dipole, the voltage ratio 64.11  yields the expected -2.16 dB 
fractional relative ‘gain’ of an isotropic source.  Generally, considering an isotropic source in the same 
way as one would a dipole, the effective length or ‘effective height’ is then: 

 
120

rR
h

π
λ=  (m) 

It may not be widely appreciated that most of the apparent gain of a λ/2 dipole is not on account of its 
physical length but simply a consequence of the shape of its radiation pattern, which is mainly on 
account of its cylindrical symmetry.  An infinitesimal electric doublet, that is a dipole of negligible 
length, has a radiation pattern similar to that of a λ/2 dipole but a slightly larger half-power 
beamwidth (90° as opposed to 78°) and consequently a gain of 1.76 dBi [29]; only 0.4 dB smaller.  The 
greater length of the λ/2 dipole increases its radiation resistance and, therefore, its radiation 
efficiency.  I will say more about the choice of this specific λ/2 length a little later, in Section 11. 

Wherever I refer to beamwidth hereafter, I will always mean the angle between the half-power points. 

9. Link budgets involving antennas related to an isotropic source 

The most common application of an isotropic source as a 
reference is in link budgets involving aperture antennas that 
are not dipoles or arrays of dipoles, such as parabolic dishes. 
It is conventional to express the gain of such antennas in dBi, 
meaning decibels above the coupling factor of an isotropic 
source.  Again, this gain can be interpreted as the degree to 
which the antenna beam is confined or as the relative size of 
the effective aperture area. 

Since the effective aperture area of an isotropic source is: 

 
π4

2λ=A  

… the relative gain [30] of an antenna with some arbitrary 
effective aperture area Ae is given by: 

 eAG
2

4

λ
π=  
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Assuming no incidental losses, if a power Pt were radiated by an isotropic source (uniformly 
throughout a solid angle of 4π steradians), at a distance r away the power density would be: 

 
24 r

P
S t

π
=  

If, in practice, the transmitting antenna has a gain Gt relative to an isotropic source, the solid angle 
over which the energy is radiated is reduced proportionately from 4π and the power-density is 
correspondingly increased: 

 
24 r
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r π
=  

If the (separate) receiving antenna has an effective aperture area Ae, the power Pr it collects is: 
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=  

If this receiving antenna has a gain Gr , then its effective aperture area is: 

 re GA
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… and this is the adaptation of the Friis transmission formula most often used in satellite link 
budgets.  The factor (λ/4πr)2 is sometimes referred to as the free-space ‘isotropic loss’ − the 
transmission loss on account of spherical spreading between two isotropic antennas − which is 
multiplied by the cascaded gains, and any incidental losses, to yield the power received for a given 
power fed to the transmitting antenna.  This is convenient because it makes the transmission loss 
dimensionless, like most other losses and the antenna gains.  As before, the dependence on λ has more 
to do with what happens at one end than the propagation path itself. 

In decibels: 10log10 Pr = 10log10 Pt + 10log10 Gt + 10log10 Gr +20log10 λ − 20log10 r − 20log10 4π 

For example: Pr (dBm) = Pt (dBW) + Gt (dBi) + Gr (dBi) + 20log10 λ − 20log10 r + 8 

… with λ and r expressed in the same unit.  Any incidental losses can be taken into account by 
subtracting their decibel values from the right-hand side. 

The product of Pt and Gt is often represented by a single factor known as the EIRP (Effective Isotropic 
Radiated Power) with the unit watts or dBW, which describes the potential strength of a satellite’s 
down-link signal, for example.  Sometimes, Gr is omitted from the calculation and then Pr can be 
termed the ‘incident isotropic power’, that is the power that would be delivered by an isotropic 
receiving antenna − to be increased proportionately by whatever receiving antenna gain is available, 
relative to an isotropic antenna. 

I’ve given an example in the box below: a practical example – waves and photons.  I had wondered if the 
DSat signal received by a domestic dish antenna was the weakest RF signal used by any domestic 
appliance but nowadays that credit probably belongs to the signals received by GPS receivers. 

 

 
 

Consider one of the Astra 2D satellites we use presently to broadcast DSat.  Its EIRP is about 51 dBW at 
beam-centre (near Liverpool) and Transponder 45, used for BBC One, etc., has a down-link frequency of 
about 10.8 GHz, so λ = 27.8 mm. The height of the geostationary orbit is about 35.7×106 metres and the gain 
of a typical ‘75 cm’ offset receiving dish antenna is about 36 dBi. Putting these values into the relevant 
equation yields Pr = -87.2 dBW or 1.9 nW fed into the low-noise front-end of the satellite receiver. 

1.9×10-9 J.s-1 is probably the weakest signal used in the domestic environment but, in terms of photons, it is 
still a very substantial signal.  The energy in a single photon is given by Ε = hν where Planck’s constant 
h = 6.26×10-34 J.s and the frequency ν = 10.8×109 Hz, so Ε = 6.8×10-24 J.  Therefore, about 280 trillion 
photons are received each second, or nearly 26,000 per cycle – assuming one’s allowed to consider photons 
and cycles, or waves, at the same time! 

a practical example – waves and photons 
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An alternative way to represent a satellite link budget is to leave in the effective aperture Ae of the 
receiving antenna as we had earlier: 

 
24

1

r
AGPP ettr

π
=  

The factor 1/4πr 2 is sometimes referred to as the free-space ‘spreading loss’ − the transmission loss on 
account of spherical spreading between an isotropic transmitting antenna and a receiving aperture of 
unit area − multiplied by the actual area and whatever other cascaded gains and incidental losses to 
yield the power received for a given power fed to the transmitting antenna.  In this case the 
‘spreading loss’ has the dimension m-2, which counteracts the dimension of Ae . 

In decibels: 10log10 Pr = 10log10 Pt + 10log10 Gt + 10log10 Ae − 20log10 r − 10log10 4π 

For example: Pr (dBm) = Pt (dBW) + Gt (dBi) + Ae (dBm2) − 20log10 r  + 19 

… with r expressed in metres and any incidental (dB) losses subtracted from the right-hand side.  
Here, Ae is expressed in decibels relative to one square metre and must take account of the 
‘aperture efficiency’ of the antenna; the fraction of the physical aperture area that accounts for 
received power.  This can have a value anywhere from about 50%, for a symmetrical paraboloid dish 
where the feed or sub-reflector blocks part of the aperture, to 85% or more for an offset paraboloid. 

There can’t be many cases in spectrum planning where it’s necessary to relate field strength to EIRP − 
helicopter measurements at HF is one − in which case for a given EIRP PEIRP = Pt Gt : 
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Another remarkably simple ‘rule of thumb’ used in Spectrum Planning Group and in ITU-R texts, but 
note that the number 30 is inside the root in this case. 

In decibels: 20log10 E = 10log10 PEIRP − 20log10 r + 10log1030 

For example: E (dBµV/m) = PEIRP (dBW) − 20log10 r  + 134.8 

... with r expressed in metres. 
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PART 2: electrical engineering of dipole antennas 

10. Antenna or transmission line? 

Back in the 1980s a television series was broadcast in the UK about the Royal Navy submarine fleet.  
One of the officers interviewed came forth with the eternal line “There are two kinds of vessel: 
submarines and targets”.  Whilst obviously incorrect, this sort of statement nevertheless displays 
‘painting the world black and white’ to a remarkable extent.  In the same vein it could be stated that: 

there are two kinds of electrical conductor: transmission lines and antennas 

The simplest forms of transmission line have two terminals at each end and a uniform characteristic 
impedance throughout the length of the line, meaning the ratio of distributed inductance to 
capacitance (per unit length) is held constant.  This impedance determines the ratio of voltage to 
current at any point in the line, and when terminated by a load of the same impedance, the line will 
pass signals to the load without anything being reflected.  A two-conductor transmission line is just a 
pair of conductors closely coupled to one another in an electromagnetic sense, capacitively and 
inductively, and because of this strong coupling very little power ‘leaks’ out. 

When a transmission line is carrying power, in a travelling wave that propagates between the 
conductors, the current in one conductor is matched by an equal current in the other, travelling in the 
opposite direction (viz two ‘legs’ of the same circuit).  If the conductors are close to one another, some 
distance away the magnetic field generated by the current in one conductor is cancelled by the equal 
and opposite contribution from the other.  Also, the electric field generated between the conductors is 
more-or-less confined to the space between them.  Consequently, transmission lines don’t radiate 
much.  A common form of transmission line encountered in the UK for intentional use at radio 
frequencies is co-axial cable [31].  In this, the electric field really is confined to the dielectric between 
the inner and outer conductors and, being surrounded by a continuous conducting ‘screen’, has a 
value close to zero everywhere outside the cable.  Another form, apparently more popular for 
domestic radio and television installations in the USA but becoming widespread throughout the 
world through its use in computer networks, is the symmetrical ‘two-wire’ transmission line 
(AKA: balanced twin feeder, figure-8 and ribbon cables, mains and telephone wiring, Cat-5 cable, etc. 
– essentially all non-coaxial cables).  This relies on symmetry and close spacing of the conductors to 
constrain radiation. 

Many of the authors of the standard texts on antennas, at some point in their deliberation, consider an 
antenna as an ‘opened-out’ transmission line that ‘leaks’ energy from the wave being propagated 
along the line ([32] for example).  Indeed, any conductor carrying a changing current that is not 
very closely coupled to another conductor carrying an equal and opposite current is likely to give rise to 
a radiated wave and can be considered an antenna.  In this context, ‘close’ means a separation a small 
fraction of λ in the medium that separates the conductors, and more-complicated balanced 
arrangements like three-phase power lines are not ruled out (although λ = 6,000 km in air for 50 Hz!). 

11. Why ‘λ/2 dipoles’ and not some other length? 

The terminal impedance of a dipole of arbitrary length and limb diameter can be calculated 
analytically, but to do this accurately the expressions involved are so long they would fill a whole 
chapter by themselves and wouldn’t make a riveting read!  Small wonder, then, that many of the 
well-known text books on antennas in general that go into this level of detail reproduce the results of 
the heroic theoretical work of Hallén [33], documented in 1938, or those of the extensive 
measurements by Brown and Woodward [34] from 1945.  I don’t have direct access to Hallén’s paper 
but reference is made to it in [35], wherein graphs of his results are reproduced.  Kraus [36] also 
devotes several pages to Hallén’s work.  Of course, with the computing power available nowadays it 
should be fairly straightforward to calculate this numerically using a program such as NEC [19] with 
some kind of batch processing. 

Maintaining the time-honoured tradition (!), I have illustrated some of Hallén’s results in graphs on 
the next page, showing the resistive and reactive components separately.  In order to separate this 
subset of curves from [35] and to present them on horizontal axes with simple scaling, I have traced 
them using Bézier curves.  These copies are not accurate but show the important trends.  Also these 
results all apply to dipoles that are symmetrical about their terminals – centre-fed by a balanced 
source, the two ‘poles’ having equal length. 
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I have dealt with the terminal impedance of 
open- and short-circuited transmission-line 
‘stubs’ in the box transmission lines as 
resonant stubs on the next page, and by 
comparison with Hallén’s reactance curves 
it’s clear that a dipole does, indeed, behave 
something like an open-circuit stub of 
similar length to each dipole limb.  
However, I must emphasise ‘something 
like’; unlike a simple transmission line, the 
antenna radiates power, probably in a non-
uniform manner along the length of its 
limbs (as suggested by the current 
distribution).  Also the characteristic 
impedance of the equivalent transmission 
line, as determined by the ratio of 
distributed L/C, is probably not uniform 
along the length of the dipole limbs. 

The periodic nature of the resonance is 
evident in the curves to the left.  The 
terminal reactance is small when the length 
is near a multiple of λ/2, but the resistance 
is large when the length is near a multiple 
of λ.  The maximum resistance and 
reactance decrease as the ratio l/d decreases 
– as the dipole is made more “fat” – and the 
rates of change of resistance and reactance 
with λ are also reduced.  Indeed, 
considering the dipole either as a 
transmission-line stub or a lumped-element 
LCR resonant circuit, it follows that “fatter” 
dipoles offer greater bandwidth. 

For the case of a stub, the slope of its 
terminal impedance depends on the 
characteristic impedance of the transmission 
line, Z0 = √ (L/C), so smaller slope is 
achieved with greater C and/or smaller L, 
however non-uniform they may be. 

The ‘-3 dB’ bandwidth of a resonant circuit 
is inversely proportional to its Q-factor 
which is proportional to the ratio of energy 
stored by the reactance to energy lost by the 

resistance (dissipated or radiated) [37].  Q-factor is a real dimensionless number so the expression 
Q = (1/R)√ (L/C) for a general LCR circuit is readily believable, if not obvious (the reactance of an 
inductor is proportional to L whereas that of a capacitor is inversely proportional to C).  So wider 
bandwidth, lower Q, is achieved with smaller reactance which, again, means greater C and/or smaller 
L, however non-uniform they may be. 

Far apart as they are, it is more-or-less intuitive that the capacitance between the dipole limbs is 
increased when their diameter, and thus surface area, is increased.  C = εA/s where ε is the permittivity 
of air, (ε ≈ 1), A is the area of the ‘plates’ and s their separation – think small and large ‘Leyden jars’! 

Also, it can be shown [38] that the self-inductance of a single cylindrical conductor (the remainder of 
the circuit not contributing by being far away or comprising perpendicular conductors) is dependent 
on the reciprocal of d so the larger its diameter the lower its self-inductance.  This fact seems to be 
well known in some circles [e.g. 39] and I can recall statements about earthing straps at VHF needing 
to be made of wide copper tape or braid, but maybe this was to reduce AC resistance on account of 
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the skin effect more than the inductance.  However, I will suggest later that belief in this ‘fact’ can 
lead to a paradox, so I’m not completely surprised when some colleagues are incredulous about it 
and, intriguingly, Kraus [40] steers clear of it.  For the record, the formula provided by Terman [39], 
suitably metricated, is L = 0.129 l [loge (l/d) - 1] nH where l is the length of the conductor and d its 
diameter, both in metres.  This formula correlates with the work of Rosa [38] and may follow from it. 

For the example of a λ/2 dipole for Band II, the length would be about 1.5 m so l/d = 60 would 
correspond to a limb-diameter of 25 mm – a “fat” dipole indeed – whereas l/d = 2000 would 
correspond to a thin wire of diameter 0.75 mm: between 21 and 22 SWG in old (British) money. 

The usual objective is to design an antenna that can easily be matched to 50 Ω or 75 Ω (the reasons for 
the choices of these particular values are explained in my companion White Paper [31]) over a 
sufficiently wide bandwidth to avoid the need for adjustments or a multitude of frequency-specific 
variants.  Penalties for not achieving a good match can include extraneous loss, uneven frequency 
response and incorrect operation of transmitters on account of poor VSWR – perhaps even damage to 
power amplifiers or transmission lines in extreme cases.  The simplest and most universal solution is 
to make the antenna, and the transmitter or receiver to which it is connected, both present terminal 
impedances that are purely resistive and have the same value as the uniform characteristic impedance 
of the transmission line that connects them.  Then maximum power transfer and ‘flat’ frequency 
response can be obtained whatever the length of the line. 

However, what can be achieved in practice is often a compromise. 

 

 
The ‘transmission line relation’ [41] gives the impedance Zx at a point on a uniform transmission line of 
characteristic impedance Z0 some distance x from the load of impedance ZL.  For a lossless line: 
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A short length of transmission line terminated in a short- or open-circuit is often referred to as a ‘stub’ and the 
slope of its terminal impedance depends on Z0 = √ (L/C), the characteristic impedance of the transmission 

transmission lines as resonant stubs 

If the load is made a short circuit, ZL = 0, then 
Zx = j Z0 tan 2π x /λ which is infinite when 
x = λ/4, 3λ/4, 5λ/4, etc.  If the length of the line 
is held constant the impedance it presents at 
the non-short-circuit end is purely reactive (it’s 
preceded by j) and follows the tangent of the 
frequency.  To the left I’ve plotted the tangent of 
an angle expressed in radians using MS Excel.  
Over the first cycle, this exhibits similar 
behaviour to the impedance of a parallel LC 
circuit.  The reactance of the inductor (positive 
sign) dominates at low frequencies – it presents 
a low impedance to DC – the reactance of the 
capacitor (negative sign) dominates at high 
frequencies and an abrupt ‘flip’ from +∞ to -∞ 
occurs at the resonant frequency. 

If the load is made an open circuit, ZL = ∞, then 
Zx = -j Z0 cot 2π x /λ which is zero when x = λ/4, 
3λ/4, 5λ/4, etc.  In this case, if the length of the 
line is held constant the impedance it presents 
at the other end is purely reactive again (it’s 
preceded by j) and follows minus the cotangent 
of the frequency.  To the left I’ve plotted minus 
the cotan of an angle expressed in radians.  
Over the first cycle, this exhibits similar 
behaviour to  the impedance of a series LC 
circuit.  The reactance of the capacitor (negative 
sign) dominates at low frequencies – it presents 
a high impedance to DC – the reactance of the 
inductor (positive sign) dominates at high 
frequencies and the impedance passes through 
zero at the resonant frequency. 

 

tangent similar to a 
short-circuit stub or 
a parallel LC circuit 

-cotangent similar to 
an open-circuit stub or 

a series LC circuit 
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Although laboratory RF instruments like signal generators and spectrum analysers are usually 
designed to present purely resistive terminal impedances close to 50 Ω or 75 Ω, a transmitter may be 
designed with a very different effective output resistance in order to provide high output power 
efficiently, and a receiver may be designed with a smaller effective input resistance in order to reduce 
the fraction of the total noise power received on account of that input resistance. 

The terminal resistance of a dipole antenna can be modified a little by changing its length, or matched 
using some kind of transformer (I’ll cover λ/4 and λ/2 transmission lines as transformers later in 
Section 14), and a terminal reactance can be mitigated over some frequency range by ‘resonating it 
out’ with a complementary reactance – for example, using a series inductor ‘loading coil’ to resonate 
the negative reactance, that is effective series capacitance, of a short dipole (l/λ < 0.4, or a monopole 
half this length).  I’ll mention loading again in Section 17.  The main obstacle to obtaining a match 
over a wide bandwidth is the difficulty in realising a component or circuit that has complementary 
variation of reactance with frequency.  In this respect, a number of observations can be made from 
Hallén’s curves interpreting the variation with l/λ = lf/c as the variation with frequency for fixed l : 

1. the large resistances and reactances around integral multiples of λ are usually avoided because of 
their large rates of change with frequency (although some clever designs exist for full-wavelength 
dipoles involving resistance transformation and reactance compensation) 

2. the “fatter” the limbs the smaller the slope of the resistance and the reactance with respect to 
frequency, although considerations of cost, weight and wind resistance may affect this 

3. the regions around the resonances near l/λ = 0.5 and 1.5 (etc.), where the reactance passes 
through zero, are usually preferred because the resulting ‘Q’ of the matched antenna is 
minimised.  The Q of any resonant circuit is proportional to the size of the reactances involved, 
as noted earlier 

4. in these regions the slope of the reactance has the same sign as that of an open-circuit λ/4 stub or 
a series LCR circuit (i.e. the capacitor’s negative-sign reactance dominates at lower frequencies 
and the inductor’s positive-sign reactance dominates at higher frequencies) 

The choice between l/λ = 0.5 or 1.5 (or greater) is explained by looking at the radiation patterns. 

12. Radiation patterns of dipoles 

Since the distant E and H fields of a dipole are related by Z, the uniform intrinsic impedance of space, 
it is only necessary to calculate the variation of one of them in order to obtain the radiation pattern, 
which can be expressed in terms of relative field strength or relative power (density).  We often 
present radiation patterns as the variation of E-field 
strength but the H-field is easier to calculate.  The H-field 
strength at some point of inspection is related to the current 
in the dipole by the Biot-Savart law so, using an assumed or 
known current distribution, it can be found by integrating 
over the length of the antenna [42]. 

The 3-dimensional radiation pattern of a λ/2 dipole is the 
well-known ‘doughnut’ shape, or more correctly a torus 
surrounding the antenna with no space in the middle, as 
shown to the right.  Symmetry dictates that the pattern is 
constant or ‘omni-directional’ in any plane perpendicular to 
the axis of the dipole.  In any plane containing the axis, the 
result of the integration can be expressed in terms of the 
variation of electric-field strength E with varying angle θ 
from the axis of the dipole: 

 ( )[ ]
θ

θπ
sin

cos2/cos
=E  

… at a constant radius from the centre of the antenna.  The 
locus of this has a single annular lobe with a beamwidth of 
78° as illustrated by the cut-away view of the torus to the 
right (the rod in the middle represents the dipole). 
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I used Mathcad to plot all the 3-dimensional radiation patterns in this document. 

When greater gain is required, to improve the link budget or to tailor the coverage area, an array of 
multiple dipoles can be used with an appropriate distribution of currents (amplitude and phase) to 
the individual dipole elements.  A well-known example is the Yagi-Uda array used for domestic 
television reception, which is an ‘end-fire’ array of dipoles coupled to a single ‘driven element’ (often 
some form of dipole).  The coupling in this case is parasitic, that is, achieved by radio! 

‘Broadside’ arrays of dipoles are used at many of the VHF/UHF radio and television transmitting 
stations, particularly the high-power ones, and one of the two possible forms of one-dimensional 
broadside array for vertical polarisation is the ‘collinear’ array.  A balanced full-wavelength dipole is 
effectively a collinear array of two closely-spaced λ/2 dipoles and has a similar pattern to a single λ/2 
dipole but with a smaller beamwidth of 47° and, consequently, 3 dBd gain. 

This is the longest a balanced single dipole can be made whilst retaining a pattern with a single lobe.  
With a length greater than λ, some part of a sinusoidal current distribution must have the opposite 
sign [8] so, in the integration, contributions from some parts must add destructively in some 
directions.  The result is a more complicated pattern having multiple annular lobes with nulls 
between them; the phase of the radiated field alternates between adjacent lobes. 

Expressed as before, the pattern of a 3λ/2 dipole is: 

 ( )[ ]
θ

θπ
sin

cos2/3cos
=E  

Plotted 3-dimensionally this appears as shown to the right; 
again, the dipole sits on the axis of symmetry.  This is less 
useful for broadcasting or communications because the 
nulls correspond to directions in which there would be no 
coverage.  Longer dipoles have even greater numbers of 
lobes and nulls. 

Consequently, the λ/2 dipole (and occasionally the λ 
dipole) is the preferred choice for many applications, and 
combining several in an array allows a great degree of 
control over the resulting radiation pattern. 

13. The cage dipole 

A means of achieving similar electrical properties to “fat” dipole limbs whilst 
constraining weight and wind resistance is to use a ‘skeletal’ representation of wide 
strips or cylinders of large diameter, made up from a number of thinner conductors 
separated across the width of the equivalent strip, or around the circumference of the 
equivalent cylinder as illustrated to the left.  The conductors in each limb are 
connected together at least at the terminals – if they are connected at both ends the 
result is known as a ‘cage’ dipole. 

Schelkunoff [43] provides some insight into ‘principal waves on cage structures’ and 
gives a general expression for the effective radius of a cage, aeff = a(na0/a)1/n, where a0 is 
the radius of each of the n conductors and a is the radius of the cage.  This can result in 
values of aeff smaller or greater than a depending on the parameter values chosen. 
The separation of adjacent conductors must be kept positive and much smaller than 
the wavelength but this is inevitable for a λ/2 cage dipole longer than it’s wide – if the 
separation in a cylindrical cage is made about the same as a then n = 2π ≈ 6. 

For example, to achieve the effect of l/d = 60 in a λ/2 dipole for λ = 3.0 m, a design 
frequency of 100 MHz, would require solid limbs of d = λ/120 = 25.0 mm diameter 
(as before).  For the equivalent cage dipole, aeff = λ/240, and with n = 6 conductors 
having a separation about the same as a, if the conductors have a0 = λ/1200 for 
example (i.e. 5 mm diameter wires), then λ/240 = a (6λ/1200a)1/6 giving a = 0.96 λ/240 
or a cage diameter of 24.1 mm.  Alternatively, if n = 4 conductors then a = 1.08 λ/240 

giving a cage diameter (or diagonal) of 27.0 mm.  For the simplest case of two conductors, n = 2 and 
aeff = √(a0s) where s is the separation between the centres of the conductors so to achieve similar 
electrical properties using n = 2 conductors would require a separation s = 62.5 mm. 
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The original Band I antenna system at Alexandra Palace, for each of the 
separate vision and sound transmissions, consisted of eight pairs of 
vertical cage dipoles around the lattice tower [44] shown to the right.  
The limbs of these were each composed of three wires and are difficult 
to make out clearly in available photos (there’s a clearer photo’ in [45]), 
but the radial spars between which they were strung are obvious in 
historical photos like this one.  Each pair of dipoles was configured as 
a directional end-fire array with both dipoles driven, probably to avoid 
interaction with the central metal tower, and all eight (most likely fed 
in-phase) collectively provided an omni-directional radiation pattern.  
Two very large cage dipoles! 

Horizontal HF cage dipoles are sometimes seen above the roofs of 
embassies, and large ‘curtain arrays’ of them are used extensively at 
the HF transmitting stations run by BBC World Service, and Vosper 
Thornycroft Communications working for them.  Wire antennas used 
for transmitting LF and MF are often made with several parallel 
conductors, for example the ‘T’ antenna at Droitwich for BBC Radio 4 
long-wave which has four parallel wires arranged as a skeletal strip.  
This increases the capacitance of the horizontal ‘top cap’ making the 
current distribution in the vertical, radiating, part more uniform. 
It may also reduce losses by distributing the earth current. 

Cage dipoles have also been used for some 50 years at radio stations 
around the UK concerned with communication with civil aircraft.  This 
antenna design [46] dates from before 1947 and was originally 
conceived to operate over the half-octave band 100 to 156 MHz used 
then for communication with military, as well as civil, aircraft.  
However, for many years the civil communication band has been 
limited to 118 to 137 MHz and some years ago the cage dipoles were 
replaced by much simpler folded dipoles, which I’ll describe presently. 

14. The λ/2 folded dipole 

The simple λ/2 dipole (two ‘prongs’) 
gets a lot of coverage in text books 
because it’s relatively simple to 
analyse – but how often have you seen 
one of these in use?  Could it be that in 
most recent cases you’ve seen a folded 
dipole, as illustrated to the left?  This 
can be described as a squashed loop, 
or a simple dipole with an additional 
continuous λ/2 conductor parallel to it 
and connected to its ends.  There are 
several good reasons why the folded 
dipole is used much more often, as the 
‘driven element’ (i.e. connected to the 
down-lead) in Yagi-Uda arrays for 
television reception, and for 
VHF/UHF communication (i.e. PMR) 
base stations like the one shown to the 
right (Banstead High Street) – there 
are 14 dipoles in this photograph; 
every one of them folded! 

The folded dipole, being a variation of the simplest cage dipole, is one of the simplest ‘skeletal’ 
implementations of a “fat” antenna.  Its terminal resistance can easily be deduced to a first order: see 
the box on the next page terminal resistance of a λ/2 folded dipole = 4 × 73 Ω for my own effort.  I must 
admit I find the, different, explanations of this provided by Kraus [47], Page [48] and others difficult 



 20 

to understand and possibly incomplete, although they may be based on more-rigorous underlying 
treatments.  For simplicity and the same reason as I gave back in Section 3, I have chosen to present 
the radiation resistance and the ‘transformer winding’ as lumped elements in series although the 
parallel representation used by others ([49] for example) is probably more correct for components that 
are distributed throughout the dipole limbs. 

It may be interesting to consider what would happen if the ‘short-circuits’ at the ends of the limbs 
were not present.  Then the impedance presented to the terminals for the difference-mode current 
would not necessarily be large at the first resonance (where l/λ = 0.5) so a more-significant part of the 
input current could flow that way.  Some distance away, there would be little radiation from the 
difference-mode current because any integral would tend to cancel – the definition of an antenna 
I gave at the end of Section 10 would not be met.  So this arrangement of conductors would make a 
poor transmitting or receiving antenna. 

I’ve never tried sawing the ends off a folded dipole myself but I’m aware of someone who has!  In his 
highly-informative web pages on antennas [50], David Jefferies, of the University of Surrey, shows 
network analyser traces for a folded dipole with and without the short-circuits in place – without 
them the terminal impedance becomes very small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Of course, these parallel conductors acting as a two-wire transmission line could carry a difference-mode 
current (as transmission lines do when conveying power) as well as the common-mode current.  However, 
the ‘short-circuits’ between the conductors at their ends ensure that a high impedance is presented to this 
current mode in the vicinity of the terminals of Dipole A (see the box on the next page: λ/4 and λ/2 
transmission lines as transformers) so relatively little current flows in this mode near the dipole’s resonance. 

Since the radiation patterns are the same, a folded dipole and a non-folded dipole (both λ/2 long and 
matched) must exhibit the same gain or aperture area.  For an equal input power P, the resulting H field an 
equal distance away must have the same strength and, since this is related to the current in the dipole by the 
Biot-Savart law [13], the current I in the non-folded dipole must be the same as the total current in the folded 
dipole.  These are all peak values with respect to time and location.  Then the current in each of Dipole A and 
Dipole B must be I/2 and the current passing through the terminals of the folded dipole must be I/2. 

If we say the radiation resistance of the folded dipole is Rr and that of the non-folded dipole is Rn then 
P = (I/2)2Rr = I2Rn so Rr = 4Rn and Rn = 73 Ω so Rr = 292 Ω, and this resistance is presented to the dipole’s 
terminals.  It follows that a folded dipole with N λ/2 continuous conductors connected across the ends of the 
non-folded element has N 

2 times the terminal resistance of a λ/2 non-folded dipole. 

A different ratio results if dipoles A and B are made from material of different thickness and this can be used 
to tailor the terminal resistance. 

A folded dipole consists of a simple, non-folded λ/2 dipole 
(‘Dipole A’) the ends of which are connected to the ends of a λ/2 
continuous conductor, which can be considered as a λ/2 dipole with 
its terminals connected together (‘Dipole B’), arranged parallel to it 
and closely spaced.  The small separation of these two dipoles, 
typically λ/10 or less, creates inductive coupling between them that 
forces their currents to be equal in magnitude and direction – 
like the action of a 1:1 transformer.  Each has a radiation resistance 
and if they are made of material of the same thickness their 
radiation resistances must be equal.  A current fed into the 
terminals of Dipole A will flow through its radiation resistance and 
also through the ‘primary’ of the effective transformer (distributed 
throughout the length of this dipole), causing an equal current to 
flow in the ‘secondary’, that is Dipole B, and through its own 
radiation resistance. 

The radiation patterns of the combined pair of dipoles, parallel to 
one another, in very close proximity and carrying equal co-phased 
currents will be more-or-less identical to those of a simple 
non-folded dipole.  The only way to achieve otherwise would be to 
reverse the direction of the current in one of the dipoles.  This is 
almost intuitive because an integral of contributions to the H field 
strength from elements of current so close together is bound to 
show constructive addition at any angle. 
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terminal resistance of a λ/2 folded dipole = 4 × 73 Ω 



 21 

14.1 ‘Reactance compensation’ in the folded dipole 

In addition to being somewhat “fatter” than its non-folded counterpart, the folded dipole has another 
property that further enhances its potential bandwidth.  With respect to the difference-mode current, 
each of the limbs behaves as a λ/4 transmission line stub with a short-circuit at its far end, so a pair of 
these stubs, connected in series with one another, appears in parallel with the dipole’s terminals. 
I covered transmission lines as resonant stubs in a box in Section 11, and we have seen the similarity 
between the terminal reactance of a λ/2 dipole and that of a λ/4 open-circuit stub.  The terminal 
reactance of a λ/4 short-circuit stub is in some respects ‘complementary’ to this – it always has the 
opposite sign – so, if a short-circuit stub is connected across the dipole’s terminals, the reactances tend 
to cancel over a range of frequencies around the dipole’s first resonance.  By appropriate choice of the 
characteristic impedance of the short-circuit stub, and its length, the resulting effective terminal 
reactance can be reduced to an ‘S’-shaped curve either side of 0 Ω around the resonant frequency. 

An ‘S’-curve with small excursions can provide an acceptable match over a greater bandwidth than 
the monotonic slope of the reactance of the un-compensated dipole.  Page alludes to this principle 
[52], Kraus mentions it [53], and I’ll demonstrate it using some approximate modelling. 

The antenna will be modelled as a lossless open-circuit stub connected in series with the radiation 
resistance, Rr .  This stub has a pure reactance Xa = -Za cot β la where β = 2π/λ and la is the stub length 
expressed in the same unit as λ .  Za is the (average, uniform) characteristic impedance of the 
‘transmission line’ that forms this open circuit stub; that is, the pair of dipole limbs.  Of course, the 
radiation resistance in a real dipole is distributed throughout the length of the open-circuit stub, and 
the characteristic impedance of the stub is anything but uniform, so this is a greatly simplified model.  
There is an alternative version of the ‘transmission line relation’ specifically for lossy lines, but then it 
is assumed that the loss is uniform along the length of the line, which it most likely isn’t in the case of 
a resonant dipole. 

The effect of the difference-mode current in the two limbs will be 
modelled as a lossless short-circuit stub connected in parallel with 
the antenna terminals, having a pure reactance Xs = Zs tan β ls where ls 
is the stub length expressed in the same unit as λ and β = 2π/λ again.  
Zs represents the characteristic impedance of the transmission line 
that forms the short circuit stub but, since there are actually two 
stubs connected in series, Zs is made twice the characteristic 
impedance of the two-conductor transmission line from which the 
folded-dipole is constructed. 

I should mention here that as soon as we begin to consider reactances connected in parallel, strictly, 
we should talk in terms of ‘susceptance’ the reciprocal of reactance, and ‘admittance’ the reciprocal of 
impedance.  However, I intend to press on using simplified language, echoing my cop-out back in 

Considering again the ‘transmission line relation’ that gives the impedance Zx at a point on a transmission line 
of characteristic impedance Z0 some distance x from the load of impedance ZL.  For a lossless line: 

 
xjZZ

xjZZ
ZZ

L

L
x β

β
tan

tan

0

0
0 +

+
=    … where β = 2π /λ. 

If x = λ/4 then Zx = Z0
2/ZL so a quarter-wavelength transmission line transforms the load impedance to a 

different value.  If the objective is to match the load impedance ZL to some other, arbitrary, ‘input’ impedance 
Zx, a solution is to connect them together with a quarter-wavelength transmission line having a characteristic 
impedance equal to the square-root of the product of the input and load impedances: Z0 = √ (Zx.ZL). 
The mismatch created at each end of this line, on account of the abrupt change of impedance, cancels the 
effect of the mismatch at the other end and maximum power transfer is achieved so long as the length of the 
line is close to λ/4.  This ‘quarter-wave transformer’ principle [51] finds use in power dividers, for example, 
used to connect an array of dipoles to a single 50 Ω cable. 

Because of the reciprocal relationship between Zx and ZL, if ZL = 0, a short-circuit, this is transformed to 
Zx = ∞, an open-circuit by a λ/4 transmission line of any characteristic impedance, and vice versa. 

If x = λ/2 then Zx = ZL so a half-wavelength transmission line transforms the load impedance 1:1 but reverses 
the phase of the voltage from one end to the other.  Z0 can have any value in this case as well. 

λ/4 and λ/2 transmission lines as transformers 
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Zt 

Rr 
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Section 3, and I hope any purists reading this will forgive me.  The result of shunting Rr + Xa with Xs is 
a terminal impedance Zt where: 
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At the quarter-wave resonance of the open-circuit stub (i.e. the dipole), la = λ/4 so β la = π/2 and Xa = 0 
making Zt = Rr Xs (Xs + jRr)/(Rr

2 + Xs
2) which is the parallel combination of Rr and Xs , as would be 

expected.  It is useful to define the frequency at which this occurs as f0 , the design centre-frequency.  
Then la = c/4f0 where c is the velocity of light, but β = 2π f/c where f is the operating frequency, 
whatever that might be, so β la = (π/2) f/f0 and Xa = -Za cot (π/2) f/f0. 

At the quarter-wave resonance of the short-circuit stub, ls = λ/4 so β ls = π/2 and and Xs = ∞, 
whereupon terms in Xs

2 dominate and all cancel leaving Zt = Rr + Xa , that is, the short-circuit stub 
‘disappears’ as would be expected.  Each of the short-circuit stubs in a conventional air-spaced folded 
dipole has length equal to the limb length so it is equal to the length of the open-circuit stub, ls = la, 
and these two phenomena occur at the same frequency f0.  Then Xs = Zs tan (π/2) f/f0.  In practice, 
semi-circular ends to the stubs may introduce an approximation here. 

The characteristic impedance of a symmetrical transmission line formed from two parallel cylindrical 
conductors is given by [54]: 
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… where a is the radius of each of the conductors, D is the separation of their centres, and εr is the 
relative permittivity of the medium between the conductors; εr ≈ 1 for air, as before. 

I’ll take the practical example of a Band II λ/2 folded-dipole of length 1.5 metres between the 
extremities of its semi-circular ends.  The conductors are of 19 mm diameter, 9.5 mm radius, and their 
centres are separated by 72 mm.  In this case the result is 243 Ω but to account for the two stubs in 
series we’ll take Zs = 486 Ω. 

This example has la = ls = 750 mm so f0 = c/4la = 100 MHz.  Actually, the geometric mean frequency of 
Band II is √(87.5×108) = 97.2 MHz and the reason why the limbs have been designed slightly shorter 
will be covered a little later (in Section 15.2). 

To assign a value to Za we first need to consider a single cylindrical conductor which has the same 
electrical properties as the parallel pair of rods in each limb of the folded dipole.  Using 
Schelkunnoff’s expression for n = 2 from Section 13, the equivalent cylindrical dipole would have a 
limb diameter of d ≈ 52 mm, and the length of the dipole l = 2 × 750 mm, so l/d ≈ 30. 

Looking back at Hallén’s terminal reactance curves at the beginning of Section 11, the slope around 
the first resonance appears to be related to the value of l/d somewhat logarithmically.  For a value of 
l/d ≈ 30 the slope of the reactance can be estimated with a ruler to be something like j800 Ω over a 
range of l/λ from 0 to 1.  In this case l is the length of the dipole which is twice the length of the 
equivalent open-circuit stub, so over a range of ∆ (la/λ) = 1 or ∆ la = λ the reactance excursion would be 
something like ∆ Xa = 1600 Ω. 

Since the reactance of the open-circuit stub is Xa = -Za cot β la, the slope of this is found by 
differentiating with respect to la . 
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… equating infinitesimals to incrementals.  At this first resonance, β la = π/2 so csc2β la = 1.  Then 
Za = 1600 β/λ but β = 2π/λ so Za = 1600/2π = 254.7 Ω. 
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The full set of practical values is then: f0 = 100 MHz, Za = 255 Ω, Zs = 486 Ω, la = ls = 750 mm and it will 
be assumed that Rr = 292 Ω, as explained earlier.  Variation of Rr with frequency will be neglected.  
Entering this lot into a spreadsheet containing expressions for the real and imaginary parts of Zt : 
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… enables them to be calculated numerically with changing f and plotted either side of the design 
centre-frequency f0 , as shown below.  The vertical axis applies to all the curves and for the reactances 
the values are multiplied by j. 

Thus the ‘reactance compensation’ effect of the short-circuit stubs is demonstrated although, in 
practice, the result may not be so smoothly-changing or so symmetrical.  Also, this shouldn’t be 
interpreted as meaning such a folded dipole can be operated over 70 to 130 MHz, or more, because 
variation of Rr and other factors neglected in the simple model would limit the usable bandwidth. 

The folded dipole, then, provides inherent ‘stub compensation’ of its own terminal reactance. 
I haven’t yet been able to determine whether this fact was discovered or invented, but if the folded 
dipole was invented with this in mind from the outset it strikes me as a remarkable piece of lateral 
thinking – even reciprocal thinking!  Alternatively, if it was discovered, it must surely rate as one of 
the more fortunate accidents of physics.  Of course, the difference-mode current that needs to flow at 
frequencies either side of the first resonance in order to mitigate the dipole’s reactance doesn’t give 
rise to any significant additional radiation. 

Where the ‘S’-curve crosses j0 Ω at the two frequencies either side of f0, Rr
2 = -Xa (Xa + Xs) 

so tan (π/2) f/f0 = ±Za/√ (ZaZs - Rr
2) and f = (2f0/π) arctan ±[Za/√ (ZaZs - Rr

2)] which yields 58.2 MHz 
and 141.8 MHz for the above example, interpreting arctan (-θ ) as arctan (π – θ ).  The separation of 
these two frequencies is maximised when Za/√ (ZaZs - Rr

2) is minimised so, for given (assumed 
constant) Za and Rr the frequency separation is increased by increasing Zs .  However, the slope of the 
‘S’ around f0 also increases so the positive and negative excursions of reactance within the ‘S’ become 
greater, reducing the usable bandwidth.  The optimum value for Zs seems to be around 400 to 500 Ω 
for this simplified example, suggesting the 72 mm separation of the rods is a good choice. 

15. Baluns 

By now, you might be wondering if I’ve missed out an important step.  A dipole antenna is most 
often designed to operate at its first resonance because this provides useful radiation patterns and 
avoids rapid changes of its terminal impedance with changing frequency.  In practice, a folded dipole 
is often preferred because its limbs appear electrically “fatter” and it provides inherent compensation 
of its own terminal reactance, both favouring achievement of an acceptable match over a broad 
bandwidth.  But a λ/2 folded dipole presents a terminal resistance of nearly 300 Ω whereas the 
co-axial cables used extensively in the UK for connecting antennas to transmitters and receivers have 
characteristic impedances of 50 Ω or 75 Ω; values close to the optima for power handling or low loss. 

-400

-200

0

200

400

600

40 60 80 100 120 140 160 MHz 

Ω 

reactance of 
dipole shunted 
by short-circuit 

stubs 
reactance of 
dipole alone 

real part of Zt 



 24 

The missing link is the interface component that many dipole/co-axial feeder systems need to 
function correctly: the balanced-to-unbalanced transformer or ‘balun’. 

15.1 The λ/2 transmission line balun 

A symmetrical, centre-fed dipole is fundamentally a balanced device, so normally whatever current 
goes in one terminal the same amount comes out the other terminal, but in some circumstances a 
co-axial cable can be considered an unbalanced device.  Connecting the terminals of a dipole directly 
to a co-axial cable can cause problems because this connects the outer co-axial conductor – the ‘screen’ 
– to one of the antenna terminals.  The outer surface of the ‘screen’ is no less an antenna than the 
dipole limb so, in the transmitting sense, some of the current conveyed by the cable, which is 
normally carried on the inner-surface of the ‘screen’ (and the outer surface of the inner conductor), is 
diverted away from the dipole limb.  Meanwhile, all the current carried by the inner conductor flows 
into the other dipole limb.  So the current distribution in the dipole loses its symmetry, and current 
flows in an additional radiator, the outer surface of the screen, that can have any imaginable 
geometrical relationship to the dipole.  Small wonder then that the radiation pattern becomes 
distorted – even variable if the far end of the down-lead terminates in your living room! 

The solution is to use some kind of balun at the point of connection to the co-axial cable.  Many novel 
designs are used in domestic and professional antennas; the use of a half wavelength transmission 
line seems popular (I covered λ/4 and λ/2 transmission lines as transformers in a box in Section 14). 

The symmetry of a folded dipole suggests that if the equivalent 
generator connected directly to its terminals were divided into two 
generators, each of half the voltage adding in series, then the voltage at 
their junction would be equal to the voltage half-way across the λ/2 
continuous conductor – so these two points could be connected 
together, and to earth, without affecting operation of the antenna.  Then 
half the radiation resistance, 146 Ω, would appear between either of the 
folded dipole’s terminals and earth.  The resistors shown in the diagram 
to the left represent the internal resistances of the matched 
‘half-generators’.  These generators could be moved away and 
connected to their respective dipole terminals using two equal lengths 
of 146 Ω co-axial cable. 

With respect to earth, these two 
equal-voltage ‘half generators’ are 
in antiphase with one another so, 

with attention to matching, the same effect could be achieved 
using a single generator feeding two cables in parallel, one of 
which was λ/2 longer than the other.  Indeed, a single co-axial 
cable can be used to feed one terminal of the dipole, with 
another cable, λ/2 long, joining that terminal to the other, with 
the screens connected together and to the centre of the λ/2 
continuous conductor, as shown to the right.  In this case, the 
half-wavelength transmission line (cable) presents an 
impedance of 146 Ω, with respect to earth, at the terminal to 
which the feeder is connected, which itself presents 146 Ω with 
respect to earth.  The parallel impedance is half, 73 Ω, which 
matches well to a 75 Ω cable.  The phase reversal caused by the 
λ/2-long transmission line guarantees that the dipole limbs are 
appropriately phased. 

Of course, the transmission line is only λ/2-long at a specific frequency and either side of this design 
frequency the performance of the complete antenna will be compromised to some extent, by the 
introduction of spurious reactance and, possibly, asymmetry.  Nevertheless, this is the basis of the 
baluns used in many television receiving antennas and, because the co-axial screen is connected to the 
point of symmetry, it works well in decoupling current flow on the outside of the screen – but it 
requires a folded dipole to achieve a match to a 75 Ω down-lead. 

~ 

~ 

146 Ω 

146 Ω 

~ 

73 Ω 

λ/2 
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I have presented this argument on the basis that the antenna’s terminal impedance can be divided.  
Interestingly, Page [55] presents it on the alternative basis that the λ/2 transmission line connected to 
the end of the feeder has the effect of a transformer that transforms the feeder impedance 1:4 whilst 
also providing the balun action.  He provides a more-general result taking account of reactance in the 
folded dipole’s terminal impedance, so what happens at frequencies either side of resonance can be 
deduced, but, oddly, he shows the balun feeding a non-folded dipole.  I don’t suppose anyone 
manufactures 18 Ω co-ax! 

Two further advantages of the folded dipole are that the ‘neutral’ point mid-way along the 
continuous conductor, shown connected to earth, provides a sturdy means of mounting that doesn’t 
interfere with the terminals, and the continuous path to earth provided by each folded limb provides 
a short-circuit to static build-up without need for any additional shunt choke.  Small wonder, then, 
that folded dipoles are ubiquitous. 

15.2 Variants 

Since the characteristic impedance of the half-wavelength transmission line can have any value, some 
manufacturers of domestic Yagi-Uda antennas have used the very compact and inexpensive 
‘insulated wire wound around a strip of metal’ type of transmission line.  The wire was often co-ax 
inner conductor, wound bifilar to avoid introducing a large series inductance and the metal strip was 
connected to the metallic boom that supports the dipole elements.  The screen of the down-lead was 
connected to this.   

Others use a printed-circuit track of appropriate length, often in the shape of a horse-shoe, usually 
with no earth plane at all.  Of course the λ/2 line can have any characteristic impedance, but one 
might expect it needs to be constant.  Perhaps because this conductor of the transmission line is so 
compact it doesn’t matter that the ‘other conductor’ is the rather remote antenna boom and 
down-lead screen.  I’m not aware that this type of balun has a particularly bad reputation though, and 
the performance of antennas equipped with it probably leaves less to be desired than that of the Yagi 
antennas with no balun still offered by some do-it-yourself chain stores. 

Concern about the absence of baluns in some domestic television antennas increased greatly 
following the launch of DTT when, from 1999, it became evident that reception was being impaired 
by impulsive interference radiated by appliances in the home with mains switches, such as 
thermostats.  At our 2003 R&D Open Days, Spectrum Planning Group displayed domestic 
installations on a mock-up of a ‘house’ with ‘good’ and ‘bad’ antennas, with and without baluns. 
We also connected them with down-leads made from relatively good and bad types of cable, the 
former having a continuous copper-foil screen and the latter only a loosely woven wire screen. 
The demonstration was completed with an impulse generator that periodically switched the mains 
supply to an inductive load (actually a large transformer) via a length of mains cable running near the 
down-leads.  This demonstrated the point clearly. 

In Spectrum Planning Group, over the years we have bought from a well-known and respected 
manufacturer many folded dipoles for professional use with 50 Ω cable, some as the driven elements 
in Yagi-Uda arrays, operating in Band II, Band III and Band IV/V.  Do these contain a transformer as 
well as a balun?  The point of connection of the dipole terminals to the captive 50 Ω co-axial cable is 
moulded in polythene so the internal construction is not at all obvious.  I was going to end this section 
here, writing ‘… pass me the hacksaw!’, but we found a damaged one and a colleague removed the 
polythene moulding with a sharp knife.  What this revealed was … the very compact and inexpensive 
‘insulated wire wound around a metal rod’ type of transmission line.  The winding is bifilar to avoid 
introducing a large series inductance and the metal rod is connected to the metallic boom that 
supports the dipole at its centre; the screen of the down-lead is connected to this.  Later, I happened to 
spot a description of this in a library book [56] where it is referred to as the ‘J-Beam inverse balun’. 

No surprises here then, but what about the impedance – there’s no sign of any λ/4 transformer (one 
would require a characteristic impedance of 61 Ω)? 

This Band II folded dipole has a total length of 1500 mm, half an air-wavelength at 100 MHz whereas 
the geometric mean frequency of Band II is 97.2 MHz, as noted before, which would require the 
length to be 1544 mm.  Reference to Hallén’s curves in Section 11 shows the terminal resistance can be 
reduced by shortening the dipole, at the expense of introducing a capacitive series reactance. 
It would appear, then, that this dipole has been shortened by about 3%, which may be enough to 
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make the terminal resistance 200 Ω, to match a 50 Ω cable via the λ/2 transmission-line balun. 
The additional reactance is probably ‘resonated out’ by a bit of additional series inductance provided 
by the (non-bifilar) ends of the balun ‘winding’. 

15.3 Some other forms of balun 

This is but one of the many ingenious forms of balun that have been thought up and I’ll illustrate a 
few more here. 
The ‘Pawsey stub’, shown to the right, is a refinement 
of the theme ‘two can play at that game’!  Since one 
dipole limb is connected to the co-axial screen, if a 
dummy cable screen of exactly the same dimensions, 
laid-out alongside the real down-lead, were 
connected to the other limb then symmetry would be 
restored.  A saving is achieved by shortening this to 
λ/4 length and connecting its far end to the outside of 
the screen of the real down-lead.  The resulting 
symmetrical λ/4 short-circuit stub presents a high 
impedance across the dipole terminals, at resonance, 
and reactance compensation at frequencies nearby.  
There is no impedance-transformation effect so this 
type of balun is ideal for interfacing a non-folded 
dipole to a 75 Ω co-axial cable.  

In Spectrum Planning Group we have some 
cylindrical dipoles terminated in Pawsey stubs built 
in-house many years ago for calibrating the gains of 
receiving antennas used for UHF field-strength 
measurement.  The family of three different sizes, 
shown to the right, are for operation at different 
frequencies in Band IV/V corresponding to the 
earliest-used three receiving antenna groups: 
Group A, Group B and Group C/D – see [57].  In each 
case the stub is made from two pieces of aluminium 
alloy ‘U’ channel material separated by a (black) 
polythene slab, and the 50 Ω co-axial cable is 
connected part-way down the stub in order to provide 
the requisite impedance transformation by auto-
transformer action. 

The λ/4 sleeve choke or ‘bazooka’ is another λ/4 
short-circuit stub, co-axial this time, that presents a 
high impedance to the current that would otherwise 
flow on the outside of the down-lead screen. 
A cylindrical conducting sleeve surrounds the 
down-lead; it is open at the top and closed the bottom 
end where it is connected to the outside of the co-axial 
screen, as shown to the right.  The top of the sleeve 
needs to be close to the dipole to avoid exposing part 
of the screen on which unwanted current could flow.  
The ratio of diameters of the conductors making up 
the co-axial stub affects its characteristic impedance, 
as does the presence of any dielectric between them 
(e.g. the cable sheath), and this impedance has some 
effect on the performance of the ‘choke’ with 
changing frequency (as mentioned in Section 11). 

In this case there is no reactance compensation 
because the stub is not connected across the dipole 

λ/4 

λ/4 

* 
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terminals.  I’d expect that if the terminal of the dipole limb connected to the co-axial inner conductor 
were also connected to the sleeve where I’ve shown an asterisk this would form a co-axial Pawsey 
stub, but I’ve never seen this applied in practice. 

A form of co-axial Pawsey stub used extensively in 
VHF/UHF transmitting equipment has a narrow 
λ/4-long slot cut on each side of the co-axial screen 
as shown here.  The separated halves of the outer 
conductor at the end of the line provide the 
balanced terminals, which I’ve shown connected to 
the dipole.  The inner co-axial conductor is 
connected to one of these terminals.  Internally this 
still operates as a co-axial line, but current flowing 
on the outside surface of the outer conductor is 
subjected to the short-circuit λ/4 stub.  This is 
sometimes shown surrounded by a λ/4 sleeve choke 
as in the previous example. 

Many other forms of balun are to be found in the 
literature ([59] for example), some more complicated 
but offering further possibilities for in situ 
impedance transformation. 

Another way to choke current on the outside of a co-axial screen is to wind part of the down-lead into 
a coil, perhaps with a magnetic core of suitable composition to reduce its size (e.g. ferrite [58] or ‘iron 
powder’ in the form of a rod, ring or clamp).  This forms a ‘common-mode’ choke, of which there are 
varieties using many other styles of 1:1 transformer, transmission line and lumped component. 

15.4 No balun required 

A further variation is to surround the end of the co-axial cable by a λ/4 sleeve, 
closed and connected to the co-axial screen at the top and open at the bottom, and 
to connect a λ/4-long dipole limb co-axially to the end of the inner conductor.  The 
result is then a sleeve dipole, as shown to the right, in which the sleeve acts 

simultaneously as a choke and a “fat” lower dipole limb.  I 
will mention some other forms of co-axial antenna later but, 
really, this is an extensive topic in its own right and I don’t 
have space to do it justice here. 

There is a way to feed a folded dipole co-axially which avoids 
having the co-axial screen connected externally to one of the 
dipole’s terminals; this can be found in some of the popular 
text books.  The cable is passed through one half of the tubular 
folded dipole, from a hole the ‘neutral’ mid-point to the 
terminals, to which its two conductors are then connected as 
shown to the left.  This achieves the same effect as a balun and 
there is probably no need to connect the outside of the screen 
to the neutral mid-point.  Unfortunately, this arrangement 
would require 292 Ω co-axial cable to achieve a match directly.  

Alternatively, to match the dipole to a 75 Ω down-lead using a single quarter-wave 
transformer would require a length of 148 Ω cable.  Both these characteristic 
impedances are uncommon. 

Of course, interaction between an antenna and its down-lead cannot always be completely overcome 
using a balun or a choke, or one of these co-axial arrangements.  Any conductor in the vicinity of a 
transmitting antenna is likely to have currents induced in its surface by the field surrounding the 
antenna, giving rise to re-radiation.  It was shown in Section 12 that minimum field strength occurs 
on the axis of a dipole so the down-lead from a co-axial antenna needs to remain aligned co-axially 
for some distance (e.g. a few wavelengths) in order to preserve symmetry.  For a symmetrical dipole, 
like the one shown above to the left, the down-lead needs to be kept in the plane of symmetry for a 
similar distance. 

λ/4 
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16. Some other types of dipole 

The reactance compensation principle of Section 14.1 can usefully be applied to any other type of 
dipole or monopole antenna by using an external stub or, by clever design, building the stub into part 
of the antenna.  Kraus [53] describes stub compensation of a non-folded dipole using an external 
open-circuit λ/2 transmission line.  Page [59] illustrates how a non-folded dipole made from two open 
cylinders, each λ/4 long, can be given the stub compensation of a folded dipole by passing a wire 
through the axis and connecting it to the ends of 
both limbs, as shown to the right.  There is 
no multiplication of the terminal resistance in 
this case because the wire forms the inner 
conductor of a co-axial line and cannot radiate. 
This arrangement is sometimes known as the 
‘double bazooka’ antenna. 

The dual of this arrangement would correspond 
to a folded dipole with an infinite number of λ/2 
continuous conductors connected across its ends.  
Increasing the number of such discrete 
conductors would progressively increase the 
terminal resistance so, in the limit, a continuous 
conductive cylinder surrounding the non-folded 
dipole, as shown here, would make the terminal 
resistance infinite (at the λ/2 resonance).  
Considered as a pair of short-circuit λ/4 co-axial 
stubs connected in series, this is obvious.  This 
would only work as an antenna if somehow 
current could be encouraged to flow on the 
outside surface of the cylinder but, even then, it 
might be difficult to match it to a sensible 
impedance. 

One way to force current onto the outside surface 
would be to cut the tube in two, reverting to two 
λ/4-long cylinders.  If the ends of the axial wires 
were then disconnected from the ends of the 
tubes the result would be a pair of open-circuit 
λ/4 co-axial stubs.   

16.1 A full-wave dipole and the ‘four-lambda cardioid’ antenna 

Interestingly, the slope of the terminal reactance of such a stub is ‘complementary’ to that of a dipole 
of length approaching λ; the full wavelength.  So if the length of each tube is then increased towards 
λ/2 but the wires kept at λ/4 length, as illustrated below, the resulting approximately ‘full-wave’ 
dipole can be arranged to present a predominantly resistive termination over some bandwidth.  
Another ‘S’-curve, but by a series combination in this case. 

 

 

 

 

Notwithstanding all I’ve said about the ubiquity of λ/2 dipoles, this principle is employed in a design 
of collinear array originally supplied to the BBC by EMI Sound & Vision Equipment Ltd. and used at 
more than 100 of the low-power (≤ 50 W ERP) television relay stations around the UK.  This uses 4 
full-wave dipoles, which probably achieves a significant simplification of the feeding system relative 
to using 8 half-wave dipoles, and a reduction in its loss.  Different versions were made for Band IV 
and Band V. 
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Shown to the left, each of the four elements is such 
a full-wave dipole, comprising a pair of ~λ/2-long 
tubes, 25.4 mm in diameter.  These tubes are 
attached to the supporting ‘cantilever’ – a length of 
aluminium alloy ‘U’-channel – by a pair of metal 
support legs (of length somewhere between λ/4 
and λ/2), connected to the tubes about half way 
along their length (but not exactly, in the Band V 
version pictured).  It’s not obvious to me how this 
arrangement works but, conceivably, the legs and 
cantilever between them could form a short-circuit 
stub connected across part of the dipole, that might 
provide further reactance compensation. 

Each dipole is fed by a short length of co-axial cable 
passing through the lower leg to the mid-point of 
the dipole which is protected by a black plastic 
sleeve.  Documentation to hand doesn’t show 
clearly how the two co-axial conductors are 
terminated but a text description indicates clearly 
enough that the inner conductor passes into an 
open-circuit stub inside the upper dipole limb.  The 
outer co-axial conductor is probably connected to 
the end of the lower dipole limb at the mid-point; 
it would be difficult to achieve an open-circuit 
stub on this side.  The requisite resistance 
transformation is most likely built into the 
four-way power divider, a printed circuit assembly 
encased within the cantilever. 

For the Band IV version, the radiation pattern in the 
vertical plane (VRP – Vertical Radiation Pattern) 
has a main lobe with a beamwidth of only 14° and 
sidelobes, resulting from the product of the 
element’s VRP and an ‘array factor’ [61] accounting 

for the number of elements, their physical arrangement including their separation, and the currents 
fed to them.  This is tailored to ‘beam tilt’ the main lobe downwards by about 6° by applying different 
amounts of phase shift (i.e. line length) to the four currents.  Also, the null that would otherwise exist 
between the main lobe and the first sidelobe has been ‘filled’ to -20 dB (relative to the main-lobe peak) 
by manipulating the relative amplitudes of the currents.  The pattern in the horizontal plane, a single 
nominally ‘cardioid’ (heart-shaped) lobe, has a beamwidth of 180° resulting from interaction between 
the dipoles and the cantilever.  The peak gain of this array is stated to be about 9 dBd. 

The ‘input reflection coefficient’ is claimed to be less than 10% over the whole of Band IV or Band V 
for each of the two versions.  When a load of impedance ZL is connected to an otherwise matched 
system with a characteristic impedance Z0 the voltage reflection coefficient is given by 
ρv = (ZL - Z0)/(ZL + Z0).  The ‘return loss’, that is the proportion of the power fed to the load that is 
reflected back, is RL = 20log10|ρv| (dB) which in this case has a value >20 dB.  Values of this order are 
considered adequate for transmitting antennas in many practical applications. 

17. Monopole antennas 

Another common type of antenna is the λ/4 monopole, usually operated above some sort of ‘ground 
plane’ (or ‘earth plane’). 

A centre-fed λ/2 dipole is a symmetrical structure with two identical limbs so an equatorial plane can 
be considered that bisects the structure, with a whole limb on each side.  If expressions are derived for 
the fields surrounding a dipole [62] it is found that the electric field in the vicinity of this plane is 
always aligned perpendicularly to it − there are radial components of E-field, but they depend on the 
cosine of the angle from the axis of the dipole and vanish at 90°, that is, at the equatorial plane. 
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It follows that if a large, thin, perfectly-conducting sheet 
were placed exactly in this plane, cutting the dipole and 
the generator feeding it in two, then nothing would be 
different – there would be no electrical or electromagnetic 
effect on the operation of the dipole.  If the sheet had 
infinite size, dividing space in two and separate 
‘half-generators’ were provided in each half, the radiation 
in one half-space would be completely independent of 
what was going on in the other.  Indeed, one half-dipole 
and its half-generator could be removed without affecting 
radiation by the other. 

What would then remain is a λ/4 monopole 
perpendicular to a large conducting plane.  Its radiation 
pattern in 3 dimensions is half that of the λ/2 dipole – like 
the top half of a doughnut sliced through its ‘equator’ as 
shown below.  Neglecting losses, if the whole of the input 
power were fed to this monopole it would be radiated 

through half the solid angle and the Poynting vector would 
have twice the value, so this antenna is said to have 3 dB gain 
over a λ/2 dipole.  In practice, the limited extent of the 
ground plane and other imperfections like its finite 
conductivity usually result in ‘undercutting’ of the VRP at 
angles close to the ground plane; that is, reduction of the 
transmitted field strength, effectively creating an upward-
tilting lobe. 

An alternative explanation is the ‘method of images’ [63], in 
which the conducting sheet is considered as a ‘mirror’ in 
which a reflected image of the monopole contributes to the 
resulting radiation. 

For a thin λ/4 monopole over a large ground plane, the radiation resistance is half that of the thin λ/2 
dipole: 36.5 Ω, although some books give it as 37.5 Ω (probably having already rounded-up the 
dipole’s value to 75 Ω).  This is almost intuitive because the integral of the Poynting vector for the case 
of the λ/2 dipole, as outlined in Section 5, would take equal contributions from both halves.  The 
expression P = (I0/√2)2Rr shows that Rr ∝ P so half the radiation resistance accounts for half the total 
power radiated, that is the radiation from each half of the dipole.  Therefore, a λ/4 monopole has 
fundamentally half the radiation resistance of a λ/2 dipole.  In practice, again, the characteristics of 
the real ground plane can affect this. 

Two well-known practical implementations are the 
VHF/UHF ‘ground plane’ antenna, shown to the left 
using skeletal radial rods (≥ λ/4 long), and the 
medium-wave transmitting antenna using a guyed 
lattice mast and wire ‘radials’ buried in the earth.  
Sometimes the monopole element is folded to increase 
its radiation resistance, which may simplify matching. 

A monopole can also be designed λ/2 long; sometimes 
referred to as an ‘end-fed dipole’.  This requires an 
impedance transformer at the base of the element 
(lumped component or transmission line stub) but a 
ground-plane may be unnecessary since the current 
distribution on the element is a complete half-sinusoid 
and the current at the feed point should be very small 

(and the voltage correspondingly large).  However, some kind of choke may be needed to prevent 
current being passed to the outside of the screen if a co-axial feed cable is used and the ‘secondary’ of 
the transformer is effectively connected between the element and the co-axial screen – if a multiple of 
λ/2 long, the outside of the screen could present an impedance similar to that of the element.  Clever 
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designs combine the choke function within the transformer.  An early design of this type is the 
‘Zeppelin’ antenna [64], originally designed for HF use, to be trailed on the end of a transmission line 
some distance behind or beneath a Zeppelin balloon keeping the high voltages well away from the 
hydrogen contained therein.  This type of antenna is also referred to as a ‘J antenna’ [65] or a ‘J-pole 
antenna’ (but is not quite the same design as what I’ll describe in the next section). 

A further variation is to make the element 5/8 λ long. 
The additional length increases the aperture area and affords 
a little gain over a λ/4 element, squashing the main lobe and 
giving rise to an upward-pointing sidelobe, as shown to the 
right.  The terminal impedance has a resistive part close to 
50 Ω, and there is a capacitive series reactance that is easily 
mitigated using a series inductor ‘loading coil’. 

There are also numerous techniques for increasing the 
radiation efficiency of a monopole of limited length such as 
adding a capacitance “hat” to the top of the element or 
lumped series inductance part way up it; another extensive 
topic in its own right (e.g. see [66]).  Loading can also be 
applied in a distributed fashion, as in the normal-mode helix antenna [67] in which inductance is 
added continuously along the length of a short monopole to help mitigate its capacitive terminal 
reactance. 

In some practical cases, notably devices using normal-mode helix antennas or whip antennas such as 
hand-held transceivers and domestic portable receivers, or receivers that use the headphone cable as 
an antenna, the presence of something approximating to a large conducting ground plane is not 
evident.  However, there is usually some piece of metalwork connected to the other terminal of the 
equipment and capacitance between this and the body of the person using the equipment, or 
connection to some other cable (e.g. for mains power) can provide a so-called ‘counterpoise’, acting as 
a skeletal ground plane or the other limb of the ‘parent’ dipole.  Ineffectiveness of the counterpoise 
can make this kind of antenna system very inefficient. 

Of course, nowadays extremely compact antennas are commonplace in mobile telephone handsets, 
partly by virtue of the short wavelengths involved.  It seems to be generally held that such antennas 
have gains considerably less than an isotropic source, and there is some evidence supporting figures 
like -10 dBi.  The physical length of the antenna is a small faction of λ (e.g. λ/8 = 42 mm at 900 MHz) 
so this is unlikely to be on account of lobes in the radiation pattern pointing the wrong way, although 
there may be scope for nulls in one or two directions on account of symmetry as happens in the case 
of an infinitesimal doublet, as noted in Section 8.  Apart from the short length, the principal cause is 
probably what I mentioned in Section 14, and follows from Section 10: that when a conductor 
intended to work as an antenna is located close to other conductors, strong coupling between them 
can favour difference-mode (transmission line) currents making the effective radiation resistance very 
small, leading to low radiation efficiency. 

In some designs of VHF/UHF ground-plane antenna, the radials are sloped downwards [68].  This 
has the effect of increasing the terminal resistance and 
reducing the angle of elevation of the VRP lobe. 
A particularly interesting example is the AS-390/SRC military 
UHF communications antenna [69], [70], illustrated to the left, 
which also has the down-lead connected part way up the 
monopole via a short-circuit stub. 

The ultimate case of the radials tilted downwards, by 90°, is 
effectively reversion to the ‘parent’ dipole.  Sloping radials 
can also be considered a skeletal representation of a cone and 
really this type of antenna is a hybrid: one half conventional 
dipole and one half biconical dipole.  I will discuss dipoles 
with conical elements in just a moment, in Section 19, but first 
I’d like to mention another interesting hybrid that can be seen 
above the roofs of countless tall buildings around the UK. 
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18. The ‘J-pole’ 

The 400 to 470 MHz band immediately below Band IV has been used for PMR (Private Mobile Radio) 
since the 1960s and the development of miniature personal two-way radios like the original 
Pye ‘Pocketfone’ outfit (separate transmitter and receiver) overcame the need for police telephone 
kiosks like the ‘Tardis’ and smaller street pillars.  According to Team Simoco [71] the Pocketfone was 
launched in 1964 and 70,000 were in use by 1975, 1000 of them at London Airport – clearly a case of 
providing a facility that had not existed before, which we now take for granted.  The standard 
companion base-station installation included an antenna system consisting of four dipole elements 

arranged as a vertical collinear array [72] as shown below.  In this case 
the elements were the Centaur of the dipole fraternity, each having one 
limb of a folded-dipole and the other a simple, non-folded limb, as 
illustrated to the left.  This was fed directly by a co-axial cable, without 
apparent need for a balun; the outer co-axial conductor was connected to 
the inner ends of both limbs (actually a continuous metal strip, and 
mechanical support was provided here) and the inner conductor was 
connected to the other end of the folded limb.  To a first order, one might 
surmise this arrangement presents the terminal impedance of a folded 
monopole (i.e. half a folded dipole), 146 Ω, to the cable; the non-folded 
limb acting as a λ/4 counterpoise without affecting the impedance.  If the 
four cables feeding these elements were each cut to an integral number of 
half-wavelengths (paying attention to the cable’s velocity factor, but not 
to its characteristic impedance), when connected in parallel they would 
present a quarter of this impedance, 36.5 Ω, which would provide a fairly 
good match to a 50 Ω down-lead: a return loss of about 16 dB.  Making 

the dipoles marginally longer would increase the terminal resistance a little, at the expense of 
introducing some inductive reactance. 

An example of such a collinear array can be seen above the 
roof of one of our buildings at Kingswood Warren (some of 
the facilities staff used to carry UHF PMR walkie-talkies) and 
this is the one pictured to the right.  On closer inspection, as 
well as ‘T-pieces’ there are larger diameter sections in the 
cables connecting the elements together; λ/4 transformers 
perhaps.  The rotation of successive elements around the 
supporting pole suggests an effort to overcome unwanted 
interaction between the elements and the pole distorting 
their radiation patterns.  I understand this array was offered 
with a variety of different radiation patterns achieved by 
different element orientations (see [73]).  Perhaps a case of 
making a virtue out of necessity? 

The practical implementations of this antenna appear always 
to have used a rectangular ‘U’-channel material rather than 
the thick strip in my drawing above; perhaps a means of 
achieving “fatness” and rigidity without excessive weight? 

The fact that more-recent PMR installations, like the one 
shown at the beginning of Section 14, use conventional ‘full’ 
folded dipoles suggests this design had some shortcomings.  
Modern TETRA [74] base stations necessarily involve 
potential simultaneous use of many different frequencies 
and, I understand from the manufacturer [72], it is 
generation of intermodulation products that has rendered 
obsolete this bolted-together design.  The modern, full, 
folded-dipole equivalent has all-welded construction. 

Nevertheless, I doff my hat to those that designed, installed 
and have maintained these antenna systems over the past 41 
years. 
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19. Dipoles with conical elements 

Resonant dipoles are fine for moderate-bandwidth applications, like the 21% fractional bandwidth of 
Band II, but resonant devices are not well suited to more extreme requirements approaching an 
octave (100% fractional bandwidth); they need a different approach based on fundamentally-non-
resonant types of antenna.  I mentioned in Section 11 that a uniform, constant-impedance, 
transmission line can provide the simplest solution to a broadband match, so if such a line can be 
designed in which the conductors are not very well coupled to each other it will also operate as an 
antenna.  One of the simplest implementations of this is the biconical dipole. 

For a co-axial line the characteristic impedance is given by 
Z0 = (60/√ εr) log e 

(b/a) where a and b are the diameters of the inner and outer 
conductors, respectively, and εr is the dielectric constant of the medium 
separating them [75].  If the absolute diameters of both conductors are 
increased progressively along the length of the line in a linear fashion, but 
the ratio of diameters is held constant, the impedance will be uniform.  This 
leads to the notion of a co-axial pair of conical conductors, of infinite length, 
behaving as a constant-impedance line.  At any distance from its apex, the 
diameter of the circular cross-section of each cone is proportional to the 
tangent of its apex angle.  To the right, I’ve drawn a truncated section of this 
near the common apex.  The terminals of this ‘near end’ of the transmission 
line would be at the almost-coincident apices of the cones; the other end of 
the line would be an infinite distance above. 

A bit of imaginative manipulation of the two apex angles leads to the 
idea of an infinite ‘discone’ where the apex angle of the outer cone has 
been increased to 180° making this conductor an infinite disc.  I’ve 
drawn a truncated section of this to the left.  Of course, the ‘ratio of 
diameters’ becomes meaningless in this case. 

Taking the process even further can yield a 
symmetrical biconical transmission line, part of 
which I’ve drawn to the right.  Again, the 
terminals of the ‘near end’ of this line would be 
at the near-coincident apices of the cones.  With 
symmetrical conical limbs of infinite extent, this 
transmission line has uniform characteristic 

impedance that depends, geometrically, only on the apex half-angle θ. 
The principal mode of propagation is a spherical wave in the maximised 
space between the cones, some of the power in which is radiated – hence the 
biconical dipole antenna [76].  Progressively increasing the diameters in a 
non-linear fashion, but keeping their ratio constant, would yield exotic 
shapes like [77] Kraus’s ‘volcano smoke’ antenna! 

The characteristic impedance of an infinite biconical dipole, Z = 120 log e (cot θ/2), which is real, is 
also its radiation resistance [78] and θ = 67° to make Z = 50 Ω. 

Uniform characteristic impedance implies the L/C ratio must not 
change along the length of the line and to a rough approximation 
it is easily shown that the capacitance per unit length is constant. 
As noted in Section 11, C = A/s for two parallel plates, where 
A is the area of the plates and s their separation in air. 
The incremental area ∆A of an annular strip on the surface of a 
cone is proportional to the radius from the axis of the cone which 
depends on the axial distance z from the apex: ∆A = 2πz tanθ∆z.  
The separation of two such strips, on the two cones symmetrical 
about the common apex, s = 2z so ∆C = ∆A/2z = πtanθ∆z which is 
constant per unit length (i.e. for constant ∆z).  This is not accurate 
because the ‘plates’ are not parallel, though they would be nearly 
so for large θ, but it demonstrates the point. 

A more accurate formulation, derived from [79], yields ∆C/∆z = 2π/[log e cot2(θ/2)]. 

z θ 

∆A 

∆z 

s 

θ 
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However, treating the incremental surfaces of the cones as cylindrical conductors and applying the 
Rosa/Terman formula I mentioned in Section 11 would imply progressively increasing inductance 
per unit length with radius from the axis which would lead to a paradox because then the 
characteristic impedance couldn’t be uniform – but Schelkunoff [79] and Kraus [76], to name but two, 
demonstrate fairly rigorously by other means that it is!  Evidently, treating parts of cones as cylinders 
in this case is stretching the approximation too far. 

19.1 Biconical dipoles 

There is no limit to the bandwidth of an infinite constant-impedance transmission line but any 
practical implementation of the biconical dipole has limbs of limited extent forming an open-circuit 
stub in the same manner as a resonant dipole.  In the transmitting case, radiation from the biconical 
transmission line makes it lossy so the wave reflected by the open-circuit end is somewhat attenuated 
and if the conical surfaces were long enough their far ends would be rendered electrically ‘invisible’ 
at the terminals.  In practice, the surfaces are usually made at least λ/4 long at the lower band edge 
so, at worst, the antenna behaves as a rather “fat” λ/2 resonant dipole.  At higher frequencies its 
behaviour tends towards that of a true biconical transmission line, the upper limit depending 
principally on the accuracy of the practical implementation of the ‘near-coincident apices’.  Between 
these two extremes an acceptable return loss may be achieved over an octave, or more, depending on 
what constitutes ‘acceptable’ for the intended application (e.g. 10 dB).  Notwithstanding these 
limitations, this is still one of the simplest truly ‘wideband’ antennas. 

We have a cage biconical dipole in 
Spectrum Planning Group, shown to the 
left, built in-house for early EMC 
measurements.  The terminals of the 
dipole limbs are connected to a balun 
(the small box in the middle) by rather 
long copper straps and its performance is 
not as good as would be hoped.  The 
converging cones at the ends of the limbs 
may be a convenient way to prevent this 
item of laboratory equipment potentially 
“poking one’s eye out” rather than 
having significant electrical properties. 

A skeletal biconical dipole, shown to the right, can be seen 
above the roof of another of the buildings at Kingswood 
Warren and was installed for monitoring FM and DAB 
transmissions.  This is operated as a ‘sleeve dipole’; the 
supporting pole and down-lead passing through the centre of 
the lower conical limb form a co-axial transmission line 
having a large characteristic impedance everywhere except 
near the apex.  As recalled earlier, the impedance of a co-axial 
line depends on the ratio of the diameters of the two 
conductors and, in principle, the much-greater impedance of 
this part of the system chokes currents from flowing on the 
pole or the outside of the down-lead screen, avoiding the 
need for a balun. 

Variants of the biconical dipole have been employed over the 
years in several designs of television transmitting antenna, 
some using half a biconical dipole (i.e. the result of bisecting 
it through its axis).  Other designs have used the ‘bow-tie’ 
element – a dipole made from a pair of triangular conductors 
[80] which is effectively a 2-dimensional projection of a 
biconical dipole.  A further variation on this theme is the 
‘bat-wing’ element [81] which combines a slot radiator with a 
flat conductor in the shape of two triangles (apex to apex). 



 35 

19.2 Discones 

In the same way that the symmetrical  λ/2 dipole is 
related to the λ/4 ‘ground plane’ monopole 
antenna, so the practical biconical dipole is related 
to the ‘discone’ antenna, popular with VHF/UHF 
scanner enthusiasts (very/ultra short-wave 
listeners?).  This is probably the best known form 
of wideband antenna and a skeletal example can be 
seen above the roof of the offices of Spectrum 
Planning Group at Kingswood Warren, as shown 
to the left.  We installed this discone to monitor 
DAB transmissions, and anything else vertically-
polarised we might be working on at VHF/UHF. 

Again, the length of the skeletal conical surface is 
λ/4 at the lowest operating frequency but, 
evidently in this case, the ‘large, thin, perfectly-
conducting sheet’ has been greatly truncated!  The 

rods in the skeletal disc were probably shortened at the design stage until the return loss became 
unacceptable slightly below the lowest intended operating frequency. 

The characteristic impedance (or radiation resistance) of an infinite discone is half that of the ‘parent’ 
biconical dipole, Z = 60 loge(cot θ/2) and θ = 47° to make Z = 50 Ω. 

We also have a collection of UHF discone 
antennas that were originally designed and built 
in-house for vertically-polarised television 
transmitter site tests using a helium-filled balloon.  
Although requirements for such site tests are 
uncommon nowadays, and mechanical ‘aerial’ 
platforms such as Simon hoists can be hired in, 
these antennas have found use when we have 
needed a UHF dipole that can easily be mounted 
co-axially on top of a mast. 

Oddly for a wideband type of antenna, a family of 
three different sizes was built for frequencies of 
522, 666 and 756 MHz (mid-Channel 27, mid-
Channel 45 and three-quarters of the way up 
Channel 56!); representative of three of the 
widely-used television receiving ‘aerial groups’ 
[57].  According to the Research Department 
Report about these antennas [82] ‘radiation from 
the supporting tube was found to cause excessive 
irregularity of the vertical radiation pattern’ so a co-axial sleeve choke was added to the metallic 
supporting tube through which the feeder passes (hidden within a larger-diameter glass-fibre tube in 
each case).  Unfortunately, the resonant nature of this choke defeated the wideband nature of the 
antenna!  So why persevere with the, relatively-complicated, discone?  Could it be significant that the 
centre of the disc presents a relatively low impedance point to which a string can be anchored to 
suspend this antenna from the balloon … especially when the string is wet?  

Even more oddly, in its intended original application the ‘small transmitter’ was connected directly to 
the C-type plug at the end of the ‘supporting tube’ so one might imagine there would have been 
scope for doing away with this tube altogether and minimising the length of feeder that could cause 
spurious radiation.  In the limit, by making the discone large enough, the entire transmitter could 
have been built within the cone thereby exposing no feeder at all! 

Perhaps this mystery is related in some way to range measurements of the VRP (with the antenna 
mounted on its side, of course) using a much-longer feeder. 
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20. Conclusions 

I have presented here my ‘take’ on the topic of dipole antennas: a bundle of facts and inferences that, 
presented together in this order, may help to explain the bases for the kinds of link budget often 
encountered in spectrum planning work. 

In ‘PART 1: characteristics of isotropic sources and λ/2 dipole antennas’, I’ve drawn heavily on the 
work of J. D. Kraus, concentrating on how we can account for these characteristics in link budgets for 
communication and broadcasting systems.  Along the way, I’ve noted ways in which some of these 
characteristics, like effective aperture area and radiation resistance, can be calculated for simple 
antenna designs and hypothetical references.  A glance through the references listed below 
demonstrates the point I made at the outset, that a logically-ordered explanation for this purpose can 
take a highly-convoluted path through one of the standard text books on antennas (which, for its own 
intended purpose, is ordered entirely logically). 

In ‘PART 2: electrical engineering of dipole antennas’ I have delved a little deeper into the basis for 
the operation of several practical implementations of the dipole antenna, explaining the significance 
of the λ/2 length and why we most often see folded dipoles nowadays.  I have touched on baluns and 
cage dipoles, and I’ve mentioned co-axial dipoles and antennas that use conical elements, as well as a 
couple of time-honoured, unusual designs and some BBC in-house specials. 

I originally embarked on this endeavour in response to questions from some colleagues which, 
I’m told, I had answered when this document in an early draft had only four or five pages!  I was 
motivated to keep going because of the old adage “the more you think you know, the more you 
realise you don’t” which, in my experience, seems to apply to antennas more than any other topic 
in electronic engineering.  I realise I’ve no more than scratched the surface here but I hope this 
White Paper proves useful to one or two. 

I am indebted to all those colleagues who have assisted me by proof reading, in particular 
Dave Darlington, John Green, Peter Shelswell, Ranulph Poole, and Jonathan Stott who also helped me 
with some of the arithmetic.  I also wish to thank John Barrett and Kevin Claydon for some of the 
photographs. 
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